

SPRINT-WP4-D-CFR-003-02 Page 1 of 39 31/08/2020

Contract No. H2020 ï 826172

SEMANTICS FOR PERFORMANT AND SCALABLE
INTEROPERABILITY OF MULTIMODAL

TRANSPORT

D4.3 A lightweight solution to automate the generation of

ontologies, mappings and annotations (F-REL)

Due date of deliverable: 30/06/2020

Actual submission date: 31/08/2020

Leader/Responsible of this Deliverable: CEF

Reviewed: Y

Document status

Revision Date Description

0.1 20/05/2020 First draft of the table of contents

0.2 21/07/2020 Lifecycle management section

0.3 30/07/2020 Added XSD2OWL section

0.4 31/07/2020 Added Collaborative Ontology Engineering section

0.5 05/08/2020 Mapping automation section

0.6 06/08/2020 Asset Manager as NAP companion and Generic Converter sections

1.0 06/08/2020 Document ready to be reviewed

2.0 31/08/2020 Final version after TMC approval

Project funded from the European Unionôs Horizon 2020 research and innovation

programme

Dissemination Level

PU Public X

CO Confidential, restricted under conditions set out in Model Grant Agreement

CI Classified, information as referred to in Commission Decision 2001/844/EC

Start date of project: 01/12/2018 Duration: 25 months

SPRINT-WP4-D-CFR-003-02 Page 2 of 39 31/08/2020

Contract No. H2020 ï 826172

EXECUTIVE SUMMARY

This document describes the improvements in the F-Rel version of the SPRINT Interoperability

Framework. We describe how our tools help establishing the Shift2Rail IP4 ecosystem, focusing on

improving interoperability by providing automation in different areas:

¶ Collaborative ontology engineering

¶ Reuse of data schemas expressed as XML Schemas to help create ontologies

¶ Finding similarities and correspondences in different standards and specifications to create

better mappings

¶ Accessing multiple data and metadata sources avoiding the necessity of moving data

between TSPs

¶ Data and metadata sharing according to given governance processes

¶ Using shared data and metadata to automatically create Converters

¶ Automatically convert data in other formats using available Converters

The implementation of the features described in this document will then be documented in D5.5 and

validated in D5.6.

SPRINT-WP4-D-CFR-003-02 Page 3 of 39 31/08/2020

Contract No. H2020 ï 826172

ABBREVIATIONS AND ACRONYMS

Abbreviation Description

API Application Programming Interface

AVMS Automatic Vehicle Monitoring

BPMN Business Process Model and Notation

C-REL Core Release

CCTV Closed-circuit television

CRM Customer Relationship Management

DCAT Data Catalog Vocabulary

DNS Domain Name System

DNS-SD DNS Service Discovery

DPI Dynamic passenger information

DRM Driver Relationship Management

EBSF European Bus System of the Future (EU-funded project)

EIF European Interoperability Framework

EU European Union

FMS Vehicle Fleet Management System

FSM Finished State Machine

FOAF Friend of a friend is a machine-readable ontology

H2020 Horizon 2020 framework programme

HTTP HyperText Transfer Protocol

IF Interoperability framework

IP Internet Protocol

IP4 Innovation Program 4

ISO International Organization for Standardization

ITxPT Information Technology for Public Transport

ITS Information

JSON JavaScript Object Notation

SPRINT-WP4-D-CFR-003-02 Page 4 of 39 31/08/2020

Contract No. H2020 ï 826172

MaaS Mobility as a Service

NAP National Access Point

ORM Object Relational Mapping

RDF Resource Description Framework

REST Representational State Transfer

S2R Shift2Rail Joint Undertaking

SCXML State Chart XML

SOAP Simple Object Access Protocol

SPARQL Protocol and RDF Query Language

WP Work Package

XML eXtensible Markup Language

XSD XML Schema Definition

EIP Enterprise Integration Pattern

SPRINT-WP4-D-CFR-003-02 Page 5 of 39 31/08/2020

Contract No. H2020 ï 826172

TABLE OF CONTENTS

Executive Summary .. 2

Abbreviations and Acronyms .. 3

Table of Contents.. 5

List of Figures ... 6

List of Tables .. 6

1. Introduction ... 7

2. Automation helping the ontology, mappings and annotations development process 8

2.1 Collaborative ontology engineering ... 8

2.2 Automation in ontology development ... 11

2.3 Automation in mapping and annotation creation .. 14

3. SPRINT Asset Manager and integrated support for automation .. 19

3.1 Lifecycle and access request processes ... 20

3.1.1 Lifecycle management ... 20

3.1.2 Access request for assets .. 21

3.2 Scalable Converter synthesis .. 22

3.3 Asset Manager-Converter runtime integration ... 25

3.4 Asset Manager as a companion of National Access Points ... 29

3.4.1 Automating metadata aggregation from multiple NAPs .. 30

3.4.2 Automating contributions to NAPs ... 33

4. Scalable/distributed RDF-based data access .. 35

5. Conclusions and next steps .. 37

6. References ... 38

SPRINT-WP4-D-CFR-003-02 Page 6 of 39 31/08/2020

Contract No. H2020 ï 826172

LIST OF FIGURES

Figure 1 OnToology Workflow ... 9

Figure 2 Example of Jenkinsfile .. 9

Figure 3 Example of ontology repository with Jenkinsfile .. 10

Figure 4 Jenkins dashboard .. 10

Figure 5 version control systems support by OnToology ... 11

Figure 6 XSD2OWL architecture ... 12

Figure 7 Schema netex_facility_support ... 13

Figure 8 Ontology result from netex_facility_support ... 14

Figure 9 Basic lifecycle management process .. 21

Figure 10 Process to request the right to access an asset in the Asset Manager Store 21

Figure 11 Deployment and Service in Kubernetes .. 23

Figure 12 Converter Deployment Kubernetes Manifest ... 23

Figure 13 Converter Service Kubernetes Manifest .. 24

Figure 14 Converter interaction with the Mappings Resolver .. 26

Figure 15 Interaction between the Asset Manager and the Converter mediated by Resolvers 27

Figure 16 Definition of the assets required by a Converter .. 28

Figure 17 Simplified interaction between the Asset Manager and the Converter using Exploration
API .. 29

Figure 18 Chimera pipeline used to convert metadata from a specific NAP and store it in the RDF
repository .. 31

Figure 19 SPARQL query for the ñget assetsò Exploration API .. 33

Figure 20 EIP-based description of an IF-based publication flow .. 34

Figure 21 NAP-aware lifecycle process ... 35

LIST OF TABLES

Table 1 XML/XSD to Ontology (OWL) Translation Rules .. 16

SPRINT-WP4-D-CFR-003-02 Page 7 of 39 31/08/2020

Contract No. H2020 ï 826172

1. INTRODUCTION

The establishment of an IP4 ecosystem requires solving many technical and organisational

problems. In this document, we document our efforts in addressing some of those challenges and in

offering ways to automate them.

An ecosystem fostering interoperability must take care of ensuring a consistent data modeling, which

is a fundamental task which ensures a proper digital representation of the domain. This first task is

addressed by offering a collaborative ontology engineering environment, which leverages on best

practices in team-based source code editing and in automatic generation of ontology diagrams and

documentation. This is complemented by automatic generation of ontology drafts using non-

ontological sources, which allows reusing data models already prepared in other formats as the

starting point for the ontology engineering work. Those topics will be described in Section 2.1 and

Section 2.2.

To enable interoperability, the two ends of a communication channel must be able to understand the

information coming from the other end. For a TSP, this means mapping the information coming from

an external system to its own data model. Since the transportation domain is very complex and many

standards and specifications are in use since years, the creation of mappings is a cumbersome task.

In Section 2.3 we propose the F-Rel version of a tool to suggest possible mappings between

standards and specifications, to lighten the burden of understanding the differences between two

domain representations and finding correspondences.

Establishing an ecosystem means creating an environment where different actors can share

information while maintaining sovereignty over their data. To this extent, the F-Rel version of the

SPRINT Interoperability Framework described in Section 3 will feature a refinement of the Asset

Manager, which is a tool to let all the actors of the ecosystem share data and metadata according to

governance processes. The tool also shows how such data and metadata can be exploited to

achieve better automation, providing automatic creation of Converters and automatic data

conversion.

Once ontologies and mappings are created and shared, the only missing piece to obtain

interoperability is a set of software artifacts to execute such mappings, actually transform messages

and enact interoperability. In Section 3.3 we describe how our Chimera framework, which can be

used to build Converters with a pipeline-based approach, can interact with the Asset Manager to

download new mappings, ontologies and dataset, therefore providing a way to dynamically support

many conversion processes in a single artifact.

SPRINT-WP4-D-CFR-003-02 Page 8 of 39 31/08/2020

Contract No. H2020 ï 826172

2. AUTOMATION HELPING THE ONTOLOGY, MAPPINGS AND

ANNOTATIONS DEVELOPMENT PROCESS

2.1 COLLABORATIVE ONTOLOGY ENGINEERING

The collaborative construction of ontologies has become a central paradigm of modern ontology

engineering. This understanding of ontologies and ontology engineering processes is the result of

intense theoretical and empirical research within the Semantic Web community. That is why in the

context of Shift2Rail, collaborative development, it is generally recognized that, in order to be useful,

but also economically viable, ontologies should be governed, developed and maintained in a

community-led manner, with the help of comprehensive environments that provide dedicated support

for collaboration and user participation. Wikis and similar communication and collaboration platforms

that allow ontology stakeholders to exchange ideas and discuss modeling decisions are probably

the most important technological components of such environments. In addition, process-based

methodologies help the ontology engineering team throughout the ontology life cycle and provide

best practices and guidelines to optimize the results of ontology development in real world transport

projects.

To help in the collaborative construction of ontologies, OnToology is a proof-of-concept tool able to

work with several types of version control systems (tested on platforms like GitHub, GitLab and

Bitbucket), obtaining good results in the documentation generation and quality evaluation of the

ontologies. OnToology applies mechanisms such as pipelines with continuous integration tools (e.g.

Jenkins) where each user can create a task, add a configuration file (jenkinsfile) inside the repository

where the ontology is located and automatically deploy all the workflow.

Figures 1-5 depict the workflow of OnToology and its corresponding outputs. Mainly, this workflow

is divided in three parts:

Developers: Ontology developers who work in a collaborative mode.

Continuous Integration: which is basically OnToology, where are all the steps that will be executed

to generate the documentation and evaluation of the ontologies.

Production: Corresponds to the continuous deployment.

SPRINT-WP4-D-CFR-003-02 Page 9 of 39 31/08/2020

Contract No. H2020 ï 826172

Figure 1 OnToology Workflow

Figure 2 shows a picture about the integration of different tools included in OnToology. For this

example, a configuration file, called Jenkinsfile, has been defined in Figure 3. This file contains the

definition of the pipeline and is checked into source control. This file specifies the stages for each

tool which will be executed/deployed by the Jenkins server. An example of a stage for Widoco [1] is

enclosed by a red box in Figure 2.

Figure 2 Example of Jenkinsfile

SPRINT-WP4-D-CFR-003-02 Page 10 of 39 31/08/2020

Contract No. H2020 ï 826172

In the current configuration of Figure 3, we have put the Jenkinsfile in the root of our repository and

the directory where the ontology is found is called "Ontology". This configuration can be modified,

but we highly recommend everyone to use the same structure.

Figure 3 Example of ontology repository with Jenkinsfile

The dashboard shown in Figure 4 integrates the ontologies, and the names of repositories are

names that identify our ontologies.

Figure 4 Jenkins dashboard

Finally, as you can observe in Figure 5, our pipeline only depends on Git version control system;

therefore it could work with any version control platform.

SPRINT-WP4-D-CFR-003-02 Page 11 of 39 31/08/2020

Contract No. H2020 ï 826172

Figure 5 version control systems support by OnToology

2.2 AUTOMATION IN ONTOLOGY DEVELOPMENT

As in many other domains, in the transport domain, much of the data is in XML (Extensible Markup

Language) format. However, the use of XML requires that applications interpret the format of each

data source they access to transform XML into OWL (Ontology Web Language) if we want to

semantically represent data. Generally, this process of transformation from XML to OWL has been

performed manually or using semi-automatic components. In the context of Shift2Rail, we want to

automatically generate conceptual models from semi-structured models. The automation of ontology

development from existing XML Schemas can speed up and simplify the match and merge

processes with S2R ontologies. In this section, we introduce a tool called XSD2OWL which allows

the automatic transformation from the XML Schema to OWL by means of the integration of many

XML data. For F-REL, we will focus on transforming representations of the XML schema components

of NeTEx1 and GTFS bench XSD2.

XSD2OWL can be applied for XML semantics reuse and it is based on mapping from XML Schema

constructs to the OWL ones that are semantically more appropriate. XML schemas are used in

grammars as the source from which the semantics they capture implicitly are going to be formalized

and made explicit. In general, the transfer of XML metadata to the ontology is not made explicit when

XML metadata instantiating these schemas is mapped.

1 https://github.com/NeTEx-CEN/NeTEx

2 https://github.com/jatoledo/xsd2owl/tree/master/GTFS_XSD

https://github.com/NeTEx-CEN/NeTEx
https://github.com/jatoledo/xsd2owl/tree/master/GTFS_XSD

SPRINT-WP4-D-CFR-003-02 Page 12 of 39 31/08/2020

Contract No. H2020 ï 826172

It is important to note that XSD2OWL is an extension of Ontmalizer3. For more details about

Ontmalizer please refer to SPRINT deliverable D4.2.

Figure 6 shows the workflow that follows XSD2OWL illustrating a real use case on the original NeTEx

sources. This workflow can be applied on other sources such as GTFS-Madrid-Bench XML.

The XSD2OWL workflow consists of the following processes:

Mapping XSD Files. Once the NeTEx XSD file has been selected by the user, XSD2OWL

syntactically analyzes this file to create tokens which will be used in the next processes.

Extracting simple types. XSD2OWL gets simple types from the tokens previously received in the

first process and it converts them to OWL constructs.

Extracting complex types & elements. XSD2OWL gets complex types and elements from the

tokens previously received in the first process and it converts them to OWL constructs. The OWL

file is finally produced in this process.

Figure 6 XSD2OWL architecture

We can observe in Figure 7 an example of a NeTEX Schema file which will be transformed by

XSD2OWL.

3 https://github.com/srdc/ontmalizer

https://github.com/srdc/ontmalizer

SPRINT-WP4-D-CFR-003-02 Page 13 of 39 31/08/2020

Contract No. H2020 ï 826172

Figure 7 Schema netex_facility_support

The file in Figure 7 was transformed to OWL file and the Figure 8 depicts the output generated by

XSD2OWL

SPRINT-WP4-D-CFR-003-02 Page 14 of 39 31/08/2020

Contract No. H2020 ï 826172

Figure 8 Ontology result from netex_facility_support

2.3 AUTOMATION IN MAPPING AND ANNOTATION CREATION

Heterogeneous data sources are the main threat to interoperability in the transportation domain (For

more detailed discussion See D2.2, D2.3 and D3.2). The multitude of transportation actors are

generating and operating upon various types of data represented in a wide range of data models,

vocabularies, format and standards. To overcome this challenge, SPRINT has developed Converter

technology that can seamlessly transform the desired data from one standard/representation to

another. In this direction, the Mapping Tool has been developed to automate the mapping process

and has been introduced in SPRINT deliverable D4.2. The main product of Mapping Tool, which

constitutes one of the essential inputs to the SPRINT converter, is a set of ñmappingsò. The so-called

mappings are a one-to-one translation of concepts/terms in one standard to their equivalents in the

other standard.

The first version of the Mapping Tool has been constructed merely on the basis of the semantic

mapping of the concepts. The core design idea was to identify the semantically similar terms in two

standards (source and target standard) using natural language processing and machine learning

algorithms and technologies. Details of the algorithm and procedure of such mapping have been

SPRINT-WP4-D-CFR-003-02 Page 15 of 39 31/08/2020

Contract No. H2020 ï 826172

presented in deliverable D4.2 and the results of the validation of the first deployable Mapping Tool

software are reported in deliverable D5.3.

In the rest of this section we introduce an improved version of the algorithm that exploits the structure

of data in the source and target standards to further drive a new and more precise set of mappings.

The heuristic behind the algorithm is as follows:

ñThere is a higher probability that two terms in two different standards refer to an identical

concept if their syntactical positions in the structure of such standards are also equivalent in

addition to the semantic of the terms.ò

In this direction, the algorithm keeps track of the position of each concept in a structure and includes

it in the similarity calculation, in addition to the semantics of the term. More precisely, only the terms

with similar syntactic positions would undergo the natural language processing through Word2Vec

technique. For example, ontologies represent knowledge as a set of Classes and the relations

(properties) among them. Hence, the basic elements in an ontology are Classes (to which individuals

belong) and object and datatype Properties, which correspond to binary relations between the

elements of the domain (i.e., instances of classes) and those of their range (i.e., instances of classes

or of datatypes). Accordingly, if the source (O1) and target (O2) standards are both ontologies (in

OWL format for instance), the algorithm extracts all Classes, Datatype and Object Properties in each

ontology (where C1 and P1 stand for the set of all Classes and Properties in O1, whereas C2 and

P2 stand for the set of all Classes and Properties in O2). It then exclusively matches4 the equivalent

structural elements to each other; that is, C1 would be matched against C2 and P1 against P2.

As shown in the above example, the algorithm follows an intuitive flow when the mapping takes place

between standards with the same format since the structure is identical. The main challenge,

however, arises when the source and target standards come from two different origins, since in such

cases a ñstructural mappingò is also required. To this end, the algorithm is relying on a predefined

set of ñtranslation rulesò that states which syntactical positions in the two formats should be

considered as corresponding. The most widely used knowledge representation formats in the

transportation domain are ontologies (captured in OWL, ttl, etc. files) and XML/XSDs formats.

Accordingly, the core of our algorithm focuses on translation rules between XML/XSD files and

Ontologies and vice versa.

Our research in this field can be considered as a branch of the broader research domain concerned

with the automation of ontology management and aimed at the generation of ontologies from non-

ontological sources such as XML/XSD (see for example section 3.2 of D4.2). However, in our case

the translation rules do not need to be overly sophisticated and accurate, since we only use them as

a heuristic to unearth similarities among concepts and not to actually construct new ontologies from

scratch. Accordingly, as listed in Table 1, our XML/XSD to Ontology translation rules are a simplified

version of the state-of-the-art translation rules used in ontology generation.

4 By matching we are referring to the whole process of extracting the semantic similarity using word2vec.

SPRINT-WP4-D-CFR-003-02 Page 16 of 39 31/08/2020

Contract No. H2020 ï 826172

Table 1 XML/XSD to Ontology (OWL) Translation Rules

XSD OWL

Type Name

<xsd:complexType name="A">

 <xsd:complexContent>

 <xsd:extension base="B">

Where B is another Complex Element

Class A

is SubClassof: B

<xsd:complexType name="A">

 <xsd:complexContent>

 <xsd:extension

 <xsd:element name="E1" type= "B" >

Where B is another Complex Element

Object Property has_E1

Domain (Class) A

Range (Class) B

<xsd:complexType name="A">

 <xsd:complexContent>

 <xsd:extension

 <xsd:attribute name="Atr1" type= "B" >

Where B is another Complex Element

Object Property has_Atr1

Domain(Class) A

Range(Class) B

<xsd: complexType name=" A">

 <attribute name="Atr1" type="D"/>

Where D is a DataType

DataType Property has_ Atr1

Domain (Class) A

Range (Data Type) D

<xsd:complexType name="A">

 <xsd:complexContent>

 <xsd:extension

 <xsd:element name="E1" type= "D" >

Where D is a DataType

DataType Property

has_E1

Domain (Class)

A

Range (Data Type) D

SPRINT-WP4-D-CFR-003-02 Page 17 of 39 31/08/2020

Contract No. H2020 ï 826172

The revised proposed algorithm for the generation of suggested mappings between terms of different

standards is the following.

Input: X: XSD file

 O: OWL file

Output: P: set of pairs ἂxt, otἃ of terms (where xt ɴ X and ot ɴ O)

Procedure:

1. X_CT_names = ɲ

 X_EA_names = ɲ

 X_EA_types = ɲ

2. foreach item i ɴ X

3. if i is name of ComplexType

 X_CT_names = X_CT_names + i

 else if i is name of element or attribute of ComplexType

 X_EA_names = X_EA_names + i

 else if i is name of type of element or attribute

 X_EA_types = X_EA_types + i

4. X_cand_classes = X_CT_names ᷾X_EA_types

 X_cand_obj_props = ɲ

 X_cand_dtype_props = ɲ

5. foreach p ɴ X_EA_names

6. if range of p is ComplexType

 X_cand_obj_props = X_cand_obj_props + p

 else if range of p is datatype

 X_cand_dtype_props = X_cand_dtype_props + p

7. O_classes = ɲ

 O_obj_props = ɲ

 O_dtype_props = ɲ

8. foreach class c ɴ O

 O_classes = O_classes + c

9. foreach object property op ɴ O

 O_obj_props = O_obj_props + op

10. foreach datatype property dp ɴ O

 O_dtype_props = O_dtype_props + dp

11. mapped_classes = word2vec_mapping(X_cand_classes, O_classes)

12. mapped_obj_props =

 word2vec_mapping(X_cand_obj_props, O_obj_props)

13. mapped_dtype_props = word2vec_mapping(X_cand_dtype_props, O_dtype_props)

14. foreach ἂx_p, o_pἃ ɴ mapped_obj_props

SPRINT-WP4-D-CFR-003-02 Page 18 of 39 31/08/2020

Contract No. H2020 ï 826172

 let ctd be the ComplexType to which x_p belongs

 d be the domain of o_p

 ctr be the (ComplexType) type of x_p

 r be the range of o_p

 mapped_obj_props = mapped_obj_props ᷾{ἂctd, dἃ, ἂctr, rἃ}

15. foreach ἂx_p, o_pἃ ɴ mapped_dtype_props

 let ctd be the ComplexType to which x_p belongs

 d be the domain of o_p

 ctr be the (datatype) type of x_p

 r be the range of o_p

 mapped_dtype_props = mapped_dtype_props ᷾ {ἂctd, dἃ, ἂctr, rἃ}

16. foreach ἂx_c1, o_c1ἃ ɴ mapped_classes

 foreach ἂx_c2, o_c2ἃ ɴ mapped_classes

 let X_props = { x_p | x_p ɴ X_cand_obj_props ᷾ X_cand_dtype_props

 and

 x_c1 is the ComplexType to which x_p belongs

 and

 x_c2 is the type of x_p }

 O_props = { o_p | o_p ɴ O_obj_props ᷾ O_dtype_props

 and

 o_c1 is the domain of o_p

 and

 o_c2 is the range of o_p }

 foreach x_p ɴ X_props

 foreach o_p ɴ O_props

 if o_p ɴ O_obj_props

 mapped_obj_props = mapped_obj_props ᷾+ ἂx_p, o_pἃ

 else

 mapped_dtype_props = mapped_dtype_props ᷾ + ἂx_p, o_pἃ

17. return mapped_classes ᷾ mapped_obj_props ᷾ mapped_dtype_props

The algorithm takes as input a pair of files (an XSD file and an OWL file), which are the standards to

be mapped to one another. First (steps 1-6) it goes through the terms of the XSD file, and it builds

three sets of terms: those that are candidates to be mapped to OWL classes (X_cand_classes); those

that are candidates to be mapped to OWL object properties (X_cand_obj_props); and those that are

candidates to be mapped to OWL datatype properties (X_cand_dtype_props). To do this, it essentially

applies the rules of Table 1. Then, it goes through the terms of the OWL file, and it retrieves three

other sets (lines 7-10): the one with the names of the OWL classes (O_classes), the one with the

SPRINT-WP4-D-CFR-003-02 Page 19 of 39 31/08/2020

Contract No. H2020 ï 826172

names of the OWL object properties (O_obj_props), and the one with the names of the OWL datatype

properties (O_dtype_props).

Then, it separately applies the word2vec technique described in Deliverable D4.2 to three pairs of

sets of terms: those containing the (candidate) classes (line 11), those containing the (candidate)

object properties (line 12), and those containing the (candidate) datatype properties (line 13).

In steps 14-16 the mappings returned by the word2vec-based algorithm are further enriched using

the structure of the OWL ontology as guidance. More precisely, for each pair of properties x_p (from

the XSD file), o_p (from the OWL file), also their domains and ranges are mapped to one another

(steps 14 and 15, where step 14 focuses on object properties, and step 15 on datatype properties).

In addition, if there are 4 elements, x_c1, x_c2 (from the XSD file), o_c1, o_c2 (from the OWL file)

such that (i) x_c1 and o_c1 (resp., x_c2 and o_c2) have already been mapped to one another, (ii)

there is a candidate property x_p in the XSD file such that x_c1 is the ComplexType to which x_p

belongs and x_c2 is the type of x_p, and (iii) there is a property o_p in the OWL file such that o_c1

and o_c2 are, respectively, the domain and range of o_p, then x_p and o_p are mapped to one

another.

Finally, line 17 returns all identified mappings, where each mapping is a pair of terms, one from the

XSD file, and one from the OWL file.

The algorithm presented above is the core of the Mapping Tool that will be deployed as part of the

demonstration platform being developed in WP5. The tool will be based on the mapping suggestions

created through the mechanism described above, and it will allow users to revise them, confirm them

if they are suitable, modify them if necessary, and then generate annotations to be used by the

converter technology that is being developed within the SPRINT project.

3. SPRINT ASSET MANAGER AND INTEGRATED SUPPORT FOR

AUTOMATION

The F-Rel version of the Asset Manager will provide a set of new features, as well as fixes and

improvements in the user interface. In this section we will describe the new features related to

automation. C-Rel demonstrated that the Asset Manager is not bound to the simple role of being a

catalogue of assets. Lifecycle management integrated with a continuous integration and deployment

tool enables reacting to changes in assets, and therefore enables the usage of the Asset Manager

as a ñcommand and control centerò for an IF-based ecosystem. Some of the actions which can be

implemented as a ñreactionò to publishing an asset indeed are:

¶ deploying a service onto a cloud platform;

¶ instructing a monitoring tool to observe the behavior of a remote resource;

¶ automatically generating documentation for data models, ontologies or services;

¶ tracking dependencies to ensure that new versions of data models, ontologies or services do

not cause disruptions in other services.

SPRINT-WP4-D-CFR-003-02 Page 20 of 39 31/08/2020

Contract No. H2020 ï 826172

In this section we will describe two new possible ways to exploit the Asset Manager and its

automation features, and we will describe improvements in lifecycle management and in the

generation of scalable artifacts to be deployed onto a cloud platform.

We will show how we can build a Converter which dynamically exploit the Asset Manager to obtain

new mappings and therefore to cover a potentially unlimited number of format transformations, and

we will design how the Asset Manager can become a companion to the National Access Points,

which are becoming mandatory in the European transportation domain.

3.1 LIFECYCLE AND ACCESS REQUEST PROCESSES

3.1.1 Lifecycle management

The Asset Manager is an application which can enforce a given governance process. To this extent,

together with CONNECTIVE, we agreed on a basic governance scheme and process to be tested

during F-Rel. The governance structure proposed by CONNECTIVE divides the users of the AM into

three main groups: Consumers, Contributors and Administrators. A Contributor is the expected user

of the Asset Manager Publisher application, which as the name suggests allows publishing new

assets. A Consumer is instead the main user of the Asset Manager Store, which allows accessing

information about assets. The Administrators are in charge of maintaining the IP4 ecosystem, built

using the IF, and therefore must assess the quality of the information in assets and ensure that the

overall ecosystem is ñstableò. By CONNECTIVE request, the Administrator group is then split into

several sub-groups, each one responsible of a specific asset type. The motivation behind this

request is that different asset type serve different purposes inside the IP4 ecosystem, and therefore

their contents must be assessed by different people. As an example, the publication of a ñJourney

planningò asset (whose content can be a GTFS file) could trigger via an automation job an update in

the Meta network, and therefore the group responsible for the Meta network maintenance should

decide whether to approve such publication.

Together with CONNECTIVE, we decided to draw a BPMN process to model the lifecycle of a

generic asset. This means that in the F-Rel version of the Asset Manager this will become the default

process to manage publishing, and that it will become the base process for further customizations

related to specific asset types.

When the contributor asks for the publication of an asset, the Asset Manager locks the asset

information disallowing further modifications and sends an approval request to the administrators of

the specific asset type. The asset state is then changed according to the administratorsô decision. If

the publication has been rejected, the author of the asset is notified (both inside the application and

via email) and the asset editing is ñunlockedò, allowed further interventions by the asset author. If

otherwise the asset publication has been allowed, the metadata is sent to the RDF repository and

all the automation jobs linked to the specific asset type are started. As last steps, the asset editing

is ñunlockedò and the asset author receives a notification (both inside the application and via email)

about the successful publication. Such process is shown as a BPMN diagram in Figure 9, and will

be implemented for F-Rel.

SPRINT-WP4-D-CFR-003-02 Page 21 of 39 31/08/2020

Contract No. H2020 ï 826172

Figure 9 Basic lifecycle management process

3.1.2 Access request for assets

As a default policy for accessing information about assets in the Asset Manager Store, we decided

that the basic information about all assets is public and visible to all users. Such information just

states that an asset ñexistsò, and that it has been published by a specific TSP at a certain point in

time. We donôt disclose any other information in public. If an Asset Manager Store user wants to

access the full set of metadata of an asset, together with its attachments, he needs to explicitly ask

to the asset owner. Such access request is performed according to the BPMN process described in

Figure 10. The request is sent to the asset owner via the Asset Manager Publisher application. If the

request is allowed, then the user is authorized and is notified (both via the Store and via email) that

he can access the asset information. Otherwise, he is just notified (again, both via the Store and via

email) that the access request has been rejected.

Figure 10 Process to request the right to access an asset in the Asset Manager Store

SPRINT-WP4-D-CFR-003-02 Page 22 of 39 31/08/2020

Contract No. H2020 ï 826172

3.2 SCALABLE CONVERTER SYNTHESIS

The C-Rel version of the Asset Manager supported the automatic creation of Converters, given their

description in terms of required ontologies, datasets and mappings. The Asset Manager, via its

integrated continuous integration/delivery component (Jenkins), is able to gather all required files,

configure a Converter, package it and ñattachò it to the Converter asset. The Docker image of the

Converter is made available to the user together with a Docker Compose file that allows to easily

deploy one Converter in a Container Runtime Environment on a machine. In C-Rel we demonstrated

the scalability features of the proposed approach. The user was able to manually scale the Converter

on a single machine by exploiting replicas of the Converter container, while a reverse proxy was

created to equally distribute the requests to the replicas running on the machine.

For F-Rel, we continue to explore the possibility of delivering scalable artifacts exploiting Kubernetes

features. Modern software architectures are composed by a set of (micro)services running on

containers that interacts among them to implement the application logic. To facilitate the deployment

and management of these type of architectures, container orchestrators have been developed.

Kubernetes is a cloud orchestrator initially developed by Google in 2014, and its role is to manage

containers running on a cluster composed of multiple nodes. Kubernetes specification defines

multiple abstractions that can be used by the developer to define the desired deployment in a

declarative way leaving to the orchestrator the responsibility of reaching and maintaining the

declared state. The Asset Manager, in the F-Rel release, will automatically also generate the

Kubernetes manifests to deploy the Converter on a Kubernetes cluster taking advantage of its

features, in particular considering scalability.

Porting the Converter onto a Kubernetes environment is an activity which reuses all the previous

work carried out in the context of C-Rel. A Pod is the implementation-unit in a Kubernetes cluster

usually running one container. The Docker container specification, which is already generated by

the automatic Converter synthesis, is the starting point for obtaining a Kubernetes configuration to

run a Pod. The same process which generate the Docker Compose package can be therefore

extended to generate both a Docker Compose configuration and a complete Kubernetes

configuration.

Figure 11 represents a Kubernetes cluster composed of two nodes. The first abstraction needed to

configure the Converter on Kubernetes is the Deployment. A Deployment declares the desired state

for a set of Pods defining, in particular, the number of replicas of the Pod that should be deployed.

In the first step in the Figure 11, a Deployment declaring one replica of the Pod is installed on the

cluster and the orchestrator deploys one Pod in one of the two nodes. The number of replicas of the

Deployment can be changed at any time and the orchestrator takes care of the required actions to

reach the target number scaling up or down the number of Pods deployed.

In Figure 12, we reported an example manifest for a Deployment of the Converter with one replica.

The manifest defines the containers running in a replica of the Pod, in this case the repository/chimer-

example image, the amount of resources (memory and CPU) required in the node where the Pod

replica is the deployed and the maximum amount of resources that are made available to a Pod

replica. In the example, the Pod running the Converter exposes its interface on port 8888.

SPRINT-WP4-D-CFR-003-02 Page 23 of 39 31/08/2020

Contract No. H2020 ï 826172

Figure 11 Deployment and Service in Kubernetes

Figure 12 Converter Deployment Kubernetes Manifest

SPRINT-WP4-D-CFR-003-02 Page 24 of 39 31/08/2020

Contract No. H2020 ï 826172

Figure 13 Converter Service Kubernetes Manifest

The manual scaling of the Deployment can then be achieved using the command:

$ kubectl scale -- replicas=3 deployments/chimera - example

With this command we ask the orchestrator to deploy three replicas of the Converter onto the cluster,

each one with the resource constraints defined before.

The second abstraction to configure the Converter on the Kubernetes cluster is the Service. A

Service is an abstraction that allows to group logically a set of Pods defining the policies to access

them. In particular, a selector is defined to identify the Pods and a policy is specified to expose them

within the cluster or on the external network. The Service abstraction offers the possibility of

obtaining automatic load distribution managed by Kubernetes and dispatching requests among the

different Pods composing the Service. This feature removes the need of configuring a reverse-proxy

as done in C-Rel for the docker-compose deployment. As shown in the second and third step in

Figure 11, a Service groups the a set of Pods within the cluster on the different nodes, if more replicas

are deployed, it automatically adapts to integrate them.

In Figure 13 a Service Kubernetes manifest for the Converter Deployment defined in Figure 12 is

reported. The label assigned to the Pod is used as a selector for the Service. The orchestrator

exposes the Service on the port 30042 of each cluster node distributing requests among the different

Pods composing the Service. In the case considered, it forwards requests on port 8888 of the

different Pods. The configuration provided also ensures that scaling the Deployment also the number

of Pods associated to the Service scales accordingly.

SPRINT-WP4-D-CFR-003-02 Page 25 of 39 31/08/2020

Contract No. H2020 ï 826172

The Kubernetes configuration provided offers the possibility of taking advantage of the orchestrator

to automatically handle the scalability of the Converter. Kubernetes defines the abstraction of

Horizontal Pod Autoscaler (HPA) that is a controller that can automatically scale horizontally the

number of pods in a Deployment based on an observed metric and a set of pre-defined target values

for the metric. Intuitively, the algorithm determines the number of replicas to be deployed using the

following formula that correlates the current and desired metric value to the number of replicas to be

deployed.

desiredReplicas = ceil[currentReplicas * (currentMetric Value /

desiredMetricValue)]

Deploying the metric-server5 a set of pre-defined metrics (Memory, CPU, ecc.) can be used to

configure an HPA. However, also custom metrics exposed by the application itself can be used to

configure the autoscaler.

For example, we can attach an HPA to the defined Converter Deployment monitoring the CPU

usage:

$ kubectl autoscale deployments/chimera - example -- min=1 -- max=5 -- cpu -

percent=80

The orchestrator will then create a Resource Controller which will check continuously the CPU usage

of the Converters. If they will use more than 80% of the CPU it will spawn additional replicas, up to

maximum 5 replicas. The HPA can also scale down the number of replicas to avoid occupying

resources currently not used, in the examples to minimum 1 replica.

The examples shown in this section demonstrates how it is possible, without any intervention on the

programming side, to exploit the manifests generated by the Asset Manager to deploy the Converter

onto a cluster running a Kubernetes orchestrator. Moreover, we showcased how this type of

configuration allows to take advantage of the features of such orchestrator to obtain resource-

efficient deployment in production.

3.3 ASSET MANAGER-CONVERTER RUNTIME INTEGRATION

The C-Rel version of the Asset Manager focused on automatically generating Converter deployable

artifacts. We demonstrated that a Jenkins job can fetch the description of a Converter, retrieve from

the Asset Manager all the required files (ontologies, mappings, datasets), and build a stand-alone

package (both as executable JAR archive and Docker compose package) which has no further

dependency on the Asset Manager itself. In a sense, the Asset Manager ñstatically compilesò the

Converter package, which is then completely independent.

In F-Rel, we already described our plans to extend such concept to the creation of Kubernetes

templates that can enable the definition of services and autoscaling on a cluster or cloud

environment. The creation of a static package anyway is not the only way to exploit a component

providing a ñsingle source of truthò for interoperability, which is the role of the Asset Manager. The

Converter framework that we created allows for a very wide array of solutions, and it is possible to

create a ñgeneric Converterò which dynamically accesses the Asset Manager to discover which

5 https://github.com/kubernetes-sigs/metrics-server

https://github.com/kubernetes-sigs/metrics-server

SPRINT-WP4-D-CFR-003-02 Page 26 of 39 31/08/2020

Contract No. H2020 ï 826172

assets are required to enable a successful conversion between two messages belonging to different

specifications/standards. Since the role of a Resolver is to provide additional features to support

other services, to achieve this goal Resolvers should be created to support the discovery phase.

Then a conversion pipeline should be created to support dynamically querying the Resolver,

downloading artifacts and caching them. This workflow is depicted in Figure 14 using the Enterprise

Integration Patterns (EIP) notation.

Figure 14 Converter interaction with the Mappings Resolver

The C-Rel version of the Chimera framework assumes that the Converter configuration is static and

known at deployment time. The design of a generic Converter requires therefore modifying the

Chimera framework, introducing more configuration blocks and extending the features of the existing

ones to let them interact with Resolvers to obtain new configurations. The resulting conversion

pipeline is depicted in Figure 15, where the new blocks in the conversion pipeline are highlighted in

green. The new blocks are:

¶ Converter Finder: given the source format and the destination format, it performs a call to a

Converter Resolver looking for existing Converter configurations (which include the identifiers

of the Mappings, Ontologies, Datasets and Data Enrichment queries). The output of this block

will be then used by the other ñInitializerò blocks.

¶ Lifting Initializer: it performs a call to a Mappings resolver, looking for Lifting Mappings which

enable extracting knowledge from the incoming message into RDF according to a specific

ontology.

SPRINT-WP4-D-CFR-003-02 Page 27 of 39 31/08/2020

Contract No. H2020 ï 826172

¶ Lowering Initializer: it performs a call to a Mappings resolver, looking for Lowering Mappings

which enable extracting knowledge from RDF (according to a specific ontology) into the

desired destination format.

Moreover, the Inference Enricher and the Data Enricher must be modified to dynamically obtain

Ontologies and Data Enrichment SPARQL queries performing calls to the Mappings Resolver.

Figure 15 Interaction between the Asset Manager and the Converter mediated by Resolvers

The key part in the interaction between the Converter and the Asset Manager is the Converter finder,

which obtains Converter metadata from the Converter Resolver. In a sense, the ñConverterò asset

metadata contains a ñrecipeò which states which Mappings, RDF Datasets and Ontologies are

required for a proper conversion between different formats/standards/specifications. An example of

such metadata can be seen in Figure 16, which contains a Converter definition from the GTFS format

to the Linked GTFS format. Such metadata can be queried by the Converter resolver, and the feature

can be exposed as an API, thus creating a Converter Resolver. After calling the ñConverter finderò

block, then, the other blocks inside the conversion pipeline will be aware that they will need to call

the Mappings Resolver using parts of the Converter metadata information to obtain their required

files.

