
 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 1 of 50 17/05/2019 
 

Contract No. H2020 –826172 

SEMANTICS FOR PERFORMANT AND SCALABLE 
INTEROPERABILITY OF MULTIMODAL TRANSPORT 

D4.1 - Analysis of the state-of-the-art and best practices in 
semantic automation for service integration 

Due date of deliverable: 30/04/2019 
Actual submission date: 20/05/2019 

 
Leader/Responsible of this Deliverable: POLIMI 
 
Reviewed: Y 
 

Document status 

Revision Date Description 

0.7 23/04/2019 First complete draft 

0.9 30/4/2019 Revised version of complete draft 

0.95 06/05/2019 Second revision of complete draft 

0.99 08/05/2019 First Version 

1.0 09/05/2019 Consolidated version for TMC approval 

1.1 17/05/2019 Final version after TMC approval and Quality check 

 

Project funded from the European Union’s Horizon 2020 research and innovation 
programme 

Dissemination Level 

PU Public X 

CO Confidential, restricted under conditions set out in Model Grant Agreement  

CI Classified, information as referred to in Commission Decision 2001/844/EC  

Start date of project: 01/12/2018 Duration: 25 months 

  



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 2 of 50 17/05/2019 
 

Contract No. H2020 –826172 

EXECUTIVE SUMMARY 

This deliverable analyzes the state of the art that is relevant for the future developments of 
semantic-based technologies for the Shift2Rail Interoperability Framework, in particular for 
what concerns ontology creation and maintenance and the creation of mappings between 
data models. The deliverable first provides an assessment of the semantic technologies 
developed in previous Shift2Rail projects. Then, it analyzes the state of the art concerning 
various topics in semantic-based techniques, namely ontology engineering, automated 
ontology creation (through learning or extraction from existing models), data mapping 
techniques, and semantic-based service discovery. Finally, it concludes with a discussion 
pointing out the techniques and technologies that seem the most suitable to be the basis for 
the future developments of the semantic technologies related to the Interoperability 
Framework. 
 
  



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 3 of 50 17/05/2019 
 

Contract No. H2020 –826172 

ABBREVIATIONS AND ACRONYMS 

 

Abbreviation Description 

API Application Programming Interface 

BF Base Form 

CSV Comma-Separate Values 

DCAT Data Catalogue Vocabulary 

DM Direct Mapping 

ETL Extract, Transform, and Load 

EU European Union 

FSM Full Service Model 

GA Grant Agreement 

H2020 Horizon 2020 framework programme 

IF Interoperability Framework 

JSON JavaScript Object Notation 

JU Shift2Rail Joint Undertaking 

NOR Non-Ontological Resources 

NP Noun Phrase 

OAS API Specification 

OBDA Ontology-based Data Access 

ODP Ontology Design Pattern 

OWL Web Ontology Language 

PoS Part of Speech 

R2RML RDB2RDF Mapping Language 

RDB Relational Data Base 

RDF Resource Description Framework 

REST Representational State Transfer 

RML RDF Mapping Language 

RSP Rail Service Provider 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 4 of 50 17/05/2019 
 

Contract No. H2020 –826172 

S2R Shift2Rail 

SPARQL SPARQL Protocol and RDF Query Language 

TAP Telematic Applications for Passenger 

TSI Technical Specification for Interoperability 

TSP Transport Service Provider 

XML eXtensible Markup Language 

WSMO Web Service Modelling Ontology 

  

 

  



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 5 of 50 17/05/2019 
 

Contract No. H2020 –826172 

 

TABLE OF CONTENTS 

Executive Summary ............................................................................................................. 2 

Abbreviations and Acronyms ............................................................................................... 3 

Table of Contents ................................................................................................................ 5 

List of Figures ...................................................................................................................... 7 

List of Tables ....................................................................................................................... 7 

1. Introduction ...................................................................................................................... 8 

2. Assessment of the outcomes of Past Shift2Rail Projects ................................................. 9 

2.1 IT2RAIL ...................................................................................................................... 9 

2.2 ST4RT ...................................................................................................................... 13 

2.2.1 FSM and TAP-TSI scenario differences ......................................................... 14 

2.2.2 Mixed FSM / TAP-TSI scenario restrictions .................................................... 15 

2.2.3 Mixed FSM / TAP-TSI scenario conceptual mappings ................................... 15 

2.2.4 Mixed FSM / TAP-TSI scenario ontology development .................................. 16 

2.3 GOF4R ..................................................................................................................... 16 

3. Analysis of the State-of-the-Art of Semantic Technologies for Interoperability .............. 18 

3.1 Ontology Engineering Techniques and Tools ........................................................... 18 

3.1.1 The NeOn methodology ................................................................................. 18 

3.1.2 Collaborative ontology engineering with OnToology ...................................... 20 

3.1.3 Collaborative ontology engineering with other tools ....................................... 21 

3.2 Ontology learning ..................................................................................................... 22 

3.2.1 State of the art ................................................................................................ 22 

3.2.2 Pre-processing ............................................................................................... 23 

3.2.3 Ontology Learning Steps ................................................................................ 24 

3.2.4 Evaluation: ..................................................................................................... 28 

3.2.5 Bridging the gap between domain knowledge and ontology engineering: ...... 28 

3.3 UML-based ontology creation .................................................................................. 29 

3.4 Data Mapping techniques ......................................................................................... 30 

3.4.1 OBDA ............................................................................................................. 31 

3.4.2 R2RML ........................................................................................................... 32 

3.4.3 RML ............................................................................................................... 33 

3.4.4 Reversing RML .............................................................................................. 34 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 6 of 50 17/05/2019 
 

Contract No. H2020 –826172 

3.5 Semantic Discovery .................................................................................................. 35 

3.5.1 Catalogue metadata vocabularies .................................................................. 35 

3.5.2 Service descriptors ......................................................................................... 36 

3.5.3 GraphQL ........................................................................................................ 41 

3.5.4 Query templates for data access .................................................................... 42 

4. Discussion ..................................................................................................................... 43 

5. References..................................................................................................................... 46 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 7 of 50 17/05/2019 
 

Contract No. H2020 –826172 

LIST OF FIGURES 

Figure 1 - FSM and TAP-TSI booking/reservation scenario ............................................... 14 

Figure 2. Steps followed by OnToology (taken from [14]). ................................................. 21 

Figure 3. Ontology Learning Layer Cake ........................................................................... 22 

Figure 4: any-to-one approach for semantic interoperability overview ............................... 31 

Figure 5: OBDA overview .................................................................................................. 32 

Figure 6 DCAT data model ................................................................................................ 35 

Figure 7. WSMO metamodel ............................................................................................. 37 

Figure 8. How WSMO-Lite concepts can be referenced in WSDL ..................................... 38 

Figure 9. hRESTS model of a Web Service ....................................................................... 38 

Figure 10. Similarities between WSDL and hRESTS and between SAWSDL and 
MicroWSMO ............................................................................................................... 39 

Figure 11. Hydra ontology .................................................................................................. 40 

Figure 12. OpenAPI ontology ............................................................................................. 41 

Figure 13. GraphQL rewriting in GraphQL-LD ................................................................... 42 

LIST OF TABLES 

Table 1 - Achieved objectives of IT2Rail IF ........................................................................ 13 

Table 2 - interoperability by conventional "data exchange" ................................................ 17 

Table 3 - semantic interoperability ..................................................................................... 17 

  



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 8 of 50 17/05/2019 
 

Contract No. H2020 –826172 

1. INTRODUCTION 

This deliverable discusses the state of the art in semantic technologies that are relevant for 
the development of the components of the Interoperability Framework (IF). The analysis 
carried out in this deliverable will be used to guide the developments of the semantic 
technologies carried out in Task 4.2 “Definition of a reference solution to automate the 
generation of ontologies, mappings and annotations” and in Task 4.3 “Analysis and selection 
of semantic tools and products and identification of missing features” of the SPRINT project. 

The analysis starts (Section 2) from the technologies developed in previous Shift2Rail (S2R) 
projects, and in particular the IT2Rail [1], ST4RT [2] and GOF4R [3] projects. 

Then, Section 3 analyzes various general-purpose semantic techniques that have been 
developed in the literature concerning ontology engineering, ontology learning, mappings 
between data models, and semantic-based discovery of services. 

Finally, Section 4 summarizes the findings of the analysis of the previous sections, and 
highlights which are the most promising approaches for the future developments of the S2R 
semantic technologies. 
 

 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 9 of 50 17/05/2019 
 

Contract No. H2020 –826172 

2. ASSESSMENT OF THE OUTCOMES OF PAST SHIFT2RAIL PROJECTS 

This section discusses the results of past S2R projects concerning, on the one hand, the 
semantic technologies they developed and, on the other hand, the mechanisms and policies 
they defined concerning the management of semantic artefacts. In particular, Section 2.1 
discusses the semantic technology developed by the IT2Rail project [1]; Section 2.2 
provides an assessment of the converter technology developed in the ST4RT project [2]; 
and Section 2.3 discusses the governance issues highlighted by the GOF4R project [3]. 

2.1 IT2RAIL 

Advanced ICT solutions that can provide a truly customer-centric, one-stop-shop experience 
for multimodal travel across the Single European Transport Area must overcome the 
technical challenge of distributed computing: the ability to coordinate the execution of 
complex computational tasks that are inherently distributed on multiple heterogeneous 
systems, or “nodes”, of an open network with no central control. In this light, systems are 
interoperable if they are capable of participating in such distributed computing tasks. 

Conventional approaches to the solution of this problem have concentrated in the past on 
altering artificially the essential features of the distributed computing landscape 

• The adoption or regulation of common formats and protocols for inter-process 
communication aimed at removing heterogeneity. 

• The local importation of remote data sets (data exchange) aimed at removing the 
distributed nature of data resources. 

• The centralized governance of participant Actors in the scope of multimodal solutions 
aimed at controlling the openness of the network. 

While designed to reduce the complexity of the technical challenge, these approaches 
reduce interoperability to controlling the movement of data sets across the network.  
However, they generate high costs in the adaptation of existing systems to common formats 
and protocols, in the administration and maintenance of these formats and protocols to keep 
them common in the face of changing requirements, and in forcing participants into a 
centrally synchronized roadmap for the deployment of solutions.  

In contrast, the IT2Rail project has recognized one-stop-shopping for multimodal travel 
solutions as a natively distributed computing problem. 

The “nodes” participating in a travel shopping, booking and ticketing process instance are 
independent “Travel Experts”, which control local resources embodying the “expertise” of a 
specific Transport Service Provider (TSP) Company about the travel solutions it provides – 
e.g. itineraries, modes of transport, prices and ticketing options. Shopping, Booking and 
Ticketing “orchestrators” developed in the project build a full solution that matches a specific 
Customer requirement by accessing and combining resources provided by Travel Experts 
over the network. 

Definition: 

The S2R IF encapsulates the “mechanics” of interoperability across the networked 
heterogeneous Travel Experts. It uses “semantic interoperability” principles and technology, 
described below, to achieve the following innovation objectives: 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 10 of 50 17/05/2019 
 

Contract No. H2020 –826172 

• insulate IT2Rail applications such as the Shopping and Booking orchestrators from 
the heterogeneity of TSP systems, providing an abstraction, the “web of 
transportation”, of the distributed data and computational resources available over 
the network; 

• minimize or eliminate altogether the need for adaptation of TSP systems to become 
part of a network of services available to Customer experience applications; 

• minimize the need for static exchange of data sets; 

• minimize the need for centralized deployment roadmaps. 

Semantic Interoperability refers to the ability of interacting computers to automate the 
interpretation of the data they process regardless of how this data is structured or 
exchanged. Knowledge about the domain problem, which is typically held by human 
analysts and programmers, is formalized in a set of logical statements, or “axioms”, written 
in a standard computer language available for machine processing. Human knowledge is 
thus transferred to machines and shared by them. Any particular representation of concepts 
and relationships in a specific data structure is associated, through a process of annotation, 
with its interpretation in terms of the domain problem. Machines can therefore discover and 
leverage equivalence relationships between different data formats with common meaning, 
and automate, therefore, the translation across these formats. Automated computer logical 
inference replaces therefore human programming of software to operate on different but 
equivalent data formats however they may be exchanged. 

Implementation: 

The Interoperability Framework is built on the principles of the ISO/EIC 10746 standard for 
Open Distributed Processing systems [4], using open source frameworks, allowing for 
multiple concurrent deployment options that can be tailored to specific operating 
environments. It exposes a set of specialized “Packaged Resolvers” – i.e. web services for 
use by IT2Rail applications to provide specific functions.  

• Location Identification returns geographical coordinates of Locations that a 
Traveller requests by name. 

• Locations Resolver returns a list of Stop Places within a requested radius from a 
point specified by its geographical coordinates.  It is used during the Shopping 
process to identify transportation stops in the vicinity of Locations selected by 
Travelers from the list returned by Location Identification. 

• Network Statistics Provider generates “meta routes” operated by TSPs. These 
“meta routes” are elements in the construction of meta-network used by the Shopping 
process. 

• Travel Expert Resolver identifies Travel Expert and Booking Engine web services 
that can generate offers and bookings for specified “meta travel episodes” that satisfy 
a Traveller’s mobility request at the time of Shopping and Booking. It is used by the 
orchestrators to identify the subset of networked Travel Experts that participate in a 
coordinated distributed shopping and booking one-stop-shop instance. 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 11 of 50 17/05/2019 
 

Contract No. H2020 –826172 

• Navitia Decoder associates Stop Places and Transportation Services with the 
encodings used by the Navitia platform1 for use by Trip Tracking in the identification 
of disruptions 

• Travel Expert and Booking Engine Brokers mediate the interaction between the 
Shopping and Booking orchestration functions, respectively, and the Travel Expert or 
Booking Engine services provided by TSPs for the generation of offers and bookings 
that satisfy Traveller’s mobility requests. Using semantic interoperability inferences, 
they perform the appropriate data transformations. 

All “Packaged Resolvers” use a common underlying framework that handles the semantic 
interoperability mechanism described above and is controlled by inference rules and 
configuration information stored in the IF’s Asset Manager. 

The IF Assets Manager provides the tools that allow independent TSPs to participate in the 
“web of transportation” environment: 

• The Ontology Repository stores the domain’s knowledge represented as first order 
logic statements in the OWL language. 

• The Semantic Web Service registry contains web service descriptors of the 
services exposed by participating TSPs – e.g. Travel Experts, Booking Engines. 
Descriptors are associated with semantically annotated data structures and inference 
rules that are used by the semantic interoperability mechanism to automate the 
conversion across different data structures. 

• The Triple Store contains semantic graphs that describe resources such as Stop 
Places. 

The Assets Manager supports workflows for versioning, approval and publication of shared 
resources such as the Ontology or Web Services descriptors. 

The following external Travel Expert services have been annotated for use in the 
implementation: 

• SNCF (mainline French Rail) PAO services 

o <endpoint>/it2r/sales/searchSolutions 

• AMS (long distance Coach operators, Czech Republic) eshopcv services 

o <endpoint>/v1/Connection 

o <endpoint>/v1/ConnectionInfo 

• Trenitalia (mainline Italian Rail) PICO Services 

o <endpoint>/Sale/SaleProcess/SolutionEngine/TravelSolution/search 

o <endpoint>/Sale/SaleProcess/SaleCoordinator/searchBase 

• RENFE (mainline Spanish Rail), Indra Rail services 

o <endpoint>/Rail_TSP/NewTSP2/GetItineraries 

o <endpoint>/Rail_TSP/NewTSP2/Availability 

                                                 
1 https://www.navitia.io/ 

https://www.navitia.io/


 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 12 of 50 17/05/2019 
 

Contract No. H2020 –826172 

o <endpoint>/Rail_TSP/NewTSP2/Trains 

• KGOVV (Austrian Public Transport), HaCon services 

o <endpoint>/openapi/vao/restproxy/trip 

• TMB (Madrid, Barcelona Public Transport) Indra Rail services 

o <endpoint>/HMI2_APP/service/otp/getRoute 

• VBB (Belin / Brandenburg Public Transport), HaCon services 

o <endpoint>/restproxy/trip 

The following external Booking Engine services have been annotated for use in the 
implementation: 

• SNCF (main line Rail operator), PAO services 

o <endpoint>/it2r/sales/bookProposals   

o <endpoint>/it2r/sales/createSalesContract   

o <endpoint>/it2r/sales/cancelBooking 

o  <endpoint>/it2r/sales/cancelTickets  

• AMS (long distance coach services), eshopcv services 

o <endpoint>/v1/SeatBlock/   

o <endpoint>/v1/Ticket/  

• Trenitalia (main line Rail operator), PICO Services 

o <endpoint>/Sale/SolutionEngine/CatalogReservation   

o <endpoint>/Sale/SaleProcess/OrderProcess 

• RENFE (mainline Rail operator) Indra Rail services 

o <endpoint>/Rail_TSP/NewTSP2/LockInventory   

o <endpoint>/Rail_TSP/NewTSP2/IssueToken  

o <endpopint>/Rail_TSP/NewTSP2/BookingInfo 

o <endpoint>/Rail_TSP/NewTSP2/ReleaseInventory  

• VBB (Public Transport Berlin/Brandenburg) HaCon services 

o <endpoint>/shopping/ShoppingMessages/VBB/purchaseRequest  

o <endpoint>/ shopping/ShoppingMessages/VBB/retrieveRequest 

 

Achieved objectives: 
 

Objective Achievement 
Mask interoperability “mechanics” to 
Applications 

Seven heterogeneous systems 
interoperating with zero changes to data 
structures or communications protocols 
 

http://lastrelease.pao.vsct.fr/it2r/sales/bookProposals
http://lastrelease.pao.vsct.fr/it2r/sales/createSalesContract
http://lastrelease.pao.vsct.fr/it2r/sales/cancelBooking
http://lastrelease.pao.vsct.fr/it2r/sales/cancelTickets
https://eshopcv.amsbus.cz:8443/v1/SeatBlock/
https://eshopcv.amsbus.cz:8443/v1/Ticket/


 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 13 of 50 17/05/2019 
 

Contract No. H2020 –826172 

Cut cost and time for TSPs to participate 
in providing multi-modal travel solutions 
without a coordinated “roadmap” for 
deployment 

New independently developed shopping 
and booking providers added to 
interoperability scope in the course of the 
project 
 

Operate with existing data structure 
specifications 

Ability to work with a subset of NeTEx 
CEN/CENELEC data standards (Stop 
Places) demonstrated 
 

Allow for multiple concurrent deployment 
options that can be tailored to specific 
operating environments 

IFs deployed simultaneously on multiple 
web server containers. 
Automated semantic conversion libraries 
configured to be deployed simultaneously 
in brokers, at client or at server sides. 

Table 1 - Achieved objectives of IT2Rail IF 

2.2 ST4RT 

Building on the IF technology developed in the IT2RAIL project, the ST4RT project has 
delivered a “Converter” software artifact enabling bi-directional semantic mapping of FSM2 
and TAP-TSI messages in a specific use case – i.e., booking of a Berth on a Trenitalia night 
train traveling from Roma Termini to Palermo Centrale stations.  

Some specific features of the TAP-TSI specification3 have led additionally to the extension 
of the semantic annotations model with respect to the original IT2Rail IF software, to new 
terms added to the IT2RAIL ontology, and to the need to access data items external to the 
content of the exchanged FSM and TAP-TSI messages, which has been achieved by adding 
semantic graph federation capabilities to the framework  

As a consequence, the ST4RT project constitutes an extension of the Interoperability 
Framework in that: 

• it adds the ability to handle FSM/TAP-TSI message specification conversion; 

• it adds terms to the Ontology; 

• it adds features to the annotation model used to associate semantics to object 
specifications; 

• it adds the ability to operate on federated distributed semantic graphs. 

The implementation of these new features has been tested in the following scenarios: 

1. “Pure” conversions 

a. TAP-TSI ReservationRequest to FSM PreBookingRequest 

b. TAP-TSI ReservationReply to FSM PreBookingResponse 

c. FSM PreBookingRequest to TAP-TSI ReservationRequest 

d. FSM PreBookingResponse to TAP-TSI ReservationReply 

                                                 
2 https://tsga.eu/fsm_login 
3 http://taf-jsg.info/?page_id=51 

https://tsga.eu/fsm_login
http://taf-jsg.info/?page_id=51


 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 14 of 50 17/05/2019 
 

Contract No. H2020 –826172 

2. TAP-TSI ReservationRequest / Reply transaction to an FSM Simulator 

3. FSM PreBookingRequest/Response transaction to a TAP-TSI Processor 

4. FSM Offering process to IT2Rail Travel Expert Broker for shopping. 

The extended IF with the added ST4RT features has been deployed and run in the same 
unchanged demonstration environment used for the initial IT2RAIL project. 

2.2.1 FSM and TAP-TSI scenario differences 

An important non-technical outcome of the project has been the identification of 
conceptual differences in the usage of TAP-TSI and FSM message design. These 
differences are conceptual in the sense that they are independent on any conversion 
mechanism that may be used and, a fortiori, on semantic conversion in particular. They 
impose restrictions on how and when FSM and TAP-TSI specifications can be used 
regardless of any conversion mechanism, but once this restricted scenario is identified it 
can be supported by semantic conversion. The conceptual differences in the design are 
illustrated in the following figure 

 

Figure 1 - FSM and TAP-TSI booking/reservation scenario 

 
An examination of Figure 1 leads to the following considerations: 

1. In the FSM scenario a CarrierOffer is a full description of the “item for sale” that a 
Customer accepts to purchase at the given conditions (for example for refunds): it 
specifies which Passengers will consume which Products on which Segments, and 
at what price. FSM Products are generic – e.g. “Week-end getaway” – and are not 
necessarily inventory-controlled. A booking is always created for a CarrierOffer, 
representing the commitment of the Rail Service Provider (RSP) to provide the 
specified products to the passengers on the specified segments, and the commitment 
of the Customer or an Agent operating in his/her behalf, to compensate the provider. 
The booking request structure is the same for all CarrierOffers because the details of 
what is being booked is in the CarrierOffer, not the booking request. 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 15 of 50 17/05/2019 
 

Contract No. H2020 –826172 

2. By contrast, different TAP-TSI data structures must be used for each different 
bookable item, and there can be at most one such structure in a ReservationRequest. 
Unlike FSM Products, TAP-TSI bookable items are therefore restricted to those pre-
defined in the TAP-TSI specification – e.g. Berth, Seat, Meal – and only one type can 
be booked at a time, meaning that all Passenger types in the same request must be 
allocated a unit of the same bookable item type. A Reservation Reply represents an 
Inventory Allocation and therefore it cannot be used to describe a purchase except 
for inventory-controlled items. 

3. In the TAP-TSI scenario Passenger type, Train, Origin and Destination are 
represented by codes, whereas in the FSM scenario they are full descriptions of the 
corresponding entities. For example, in a TAP-TSI Reservation Request “Passenger” 
indicates the number of passengers of a given type – e.g., 1 Adult – not the actual 
Passenger’s information such as name, age, etc. 

4. In the TAP-TSI scenario a Reservation Request / Reply establishes a financially 
relevant relationship between Requesting and Sending Systems, and therefore 
between the Companies that “own” these systems. By contrast, in the FSM Scenario 
the financially relevant relationship is established by a separate payment and 
settlement process operating on a Booking that has no equivalent in the TAP-TSI 
specification. 

2.2.2 Mixed FSM / TAP-TSI scenario restrictions 

The preceding considerations further restrict the applicability of a mixed FSM / TAP-TSI 
scenario regardless of how data structures are converted into one another, as follows: 

1. An FSM Booking request cannot contain CarrierOffers supplied by different RSPs. 

2. An FSM CarrierOffer submitted through conversion to a TAP-TSI processor can 
include at most one Product, and this Product must be an inventory-controlled TAP-
TSI bookable item – e.g., a Berth, Seat. If more than one Passenger is in the 
CarrierOffer, then all Passengers consume a unit of the same Product on the same 
Segment. 

3. Passenger details, except passenger type such as “Adult”, are ignored by the TAP-
TSI processor.  

4. The CarrierOffer’s Price and Conditions are ignored by the TAP-TSI processor. 

5. An implicit assumption must be accepted that a ReservationReply generated by a 
TAP-TSI processor – i.e., an Inventory Allocation – is a sale recorded between the 
“owner” of the FSM requesting system and the “owner” of the TAP-TSI processor. 
Payment from the Customer must be handled by the owner of the FSM requesting 
system. 

2.2.3 Mixed FSM / TAP-TSI scenario conceptual mappings 

Within the restrictions described in the previous section, the following conceptual mappings 
can be established between the FSM and TAP-TSI data structures: 

1. An FSM PreBookRequest maps to/from a TAP-TSI ReservationRequest. 

2. An FSM PreBookResponse maps to/from a TAP-TSI ReservationReply. 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 16 of 50 17/05/2019 
 

Contract No. H2020 –826172 

3. An FSM CarrierOffer’s Product maps to a TAP-TSI bookable item – e.g., a Berth –
and is used to generate the appropriate request in the ReservationRequest or 
allocation in the ReservationReply. 

4. The StopPlaceCodes of the origin and destination StopPlaces of an FSM Itinerary 
Segment map to/from TAP-TSI Origin and Destination StationCodeType. 

5. An FSM Segment’s Vehicle’s vehicleId maps to/from TAP-TSI Train number. 

6. An FSM Caller maps to/from TAP-TSI Requestor and Terminal Type identifying the 
sending and receiving systems. 

7. The number of Passenger instances in an FSM request, assumed to be all Adults in 
the use case, maps to/from the integer number of Adult passengers in the TAP-TSI 
messages. 

At the high level all the main elements described in Figure 1 for the FSM and TAP-TSI 
scenarios were identified, indicating that, under the restrictions listed in the previous 
sections, it is logically possible to operate a mixed FSM / TAP-TSI scenario using the IF. 

2.2.4 Mixed FSM / TAP-TSI scenario ontology development 

In order to automate the conversion, the common high-level conceptual mappings where 
further analysed with respect to the initial IT2RAIL ontology, and details of both data 
structures were used to create a new, extended, ST4RT ontology used in the annotation 
process of the ST4RT converter. The outcomes of this activity are documented in the D3.3 
Mapping between standard and reference ontology4, and D4.3 Mapping between standard 
and reference ontology 5  deliverables. Due to the particular design of the TAP-TSI 
specification, and particularly of its usage of codes to describe meaning and data stored in 
external code lists, this process was found to be extremely labor-intensive. It also 
necessitated the creation of semantic graphs representing the code lists which, while adding 
to the effort, it also demonstrated that code lists can indeed be captured by a distributed 
semantic graph, opening up the possibility of eliminating the need to copy the lists as data 
sets from one system to another. In fact, such code list graphs can be stored in the IF’s triple 
store – i.e. the data layer – and shared through the Asset Manager. Since the FSM 
specification does not have provision for ‘master data’, and allows for the use of code lists, 
this capability can be used for a purely FSM scenario using master data managed by the 
Asset Manager. 

2.3 GOF4R 

The GOF4R objective was to define sustainable governance for the IF that will create the 
right conditions to introduce seamless mobility services and foster the development of multi-
modal travel services. 

An essential outcome of the project was the realization that the “governance problem” is 
strictly associated with the mechanisms used for interoperability.  

 
 

                                                 
4 http://www.st4rt.eu/download.aspx?id=0054e8e6-dcb4-4607-bd2d-5a8be3129caf 

5 http://www.st4rt.eu/download.aspx?id=eaacec02-94d2-4450-8a4a-8650f0d46167 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 17 of 50 17/05/2019 
 

Contract No. H2020 –826172 

interoperability mechanism Governance problem 

• Adoption of common formats and 
protocols 

 

• How do we accommodate variants while 
keeping them common? How do we 
ensure synchronized “adoption”? 

 

• Local importation of pre-defined 
remote data sets 

 

• How do I know who gets my data sets, 
how they use them? 

• How do I know where they come from? 
• How do we ensure they are correct and 

up-to-date? 
• How do we ensure everybody using the 

same data calculate the same results? 
 

Table 2 - interoperability by conventional "data exchange" 

 

interoperability mechanism Governance problem 

• Adoption of shared machine-
interpretable semantics (ontology) 
that abstracts from formats 

 

• How do we evolve the ontology? 
• How do we map across ontologies? 
 

• Link data across the web 
 

• How we discover and establish links 
across the web of data? 

• How do we provide what tools and 
education? 

Table 3 - semantic interoperability 

 

Comparison of the conventional “data exchange” and semantic interoperability illustrated by 
Table 2 and Table 3 above shows that the adoption of semantic interoperability eliminates 
control of actual data flows from the governance mission, changing its nature into one of 
evolution of the formal conceptualization of the domain knowledge (ontology), and the 
meaningful linking of distributed data. Both the latter can be at least in part automated with 
appropriate advanced tooling. The SPRINT project is designed as a step forward in this 
direction.  

 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 18 of 50 17/05/2019 
 

Contract No. H2020 –826172 

3. ANALYSIS OF THE STATE-OF-THE-ART OF SEMANTIC 
TECHNOLOGIES FOR INTEROPERABILITY 

This section surveys the state of the art in various topics that are relevant for the 
development of the semantic technologies that will be developed during the SPRINT project. 
First, it studies the problem of manual ontology creation and maintenance (Section 3.1); 
then, it looks at techniques for the automated creation of ontologies starting from 
unstructured information (Section 3.2), and also from structured notations such as UML 
(Section 3.2.1); further, Section 3.4 surveys techniques for creating mappings between data 
models; finally, Section 3.5 analyses semantic-based techniques for service discovery. 

3.1 ONTOLOGY ENGINEERING TECHNIQUES AND TOOLS 

Ontologies started to be built in the early nineties using domain-specific methods, tools and 
techniques that were typically driven by the targeted domain. The emergence of ontology 
development methodologies during the nineties started to transform the art of building 
ontologies into an engineering activity, moving from ad-hoc and domain-oriented 
methodologies into general-purpose methodologies. Of these methodologies, 
METHONTOLOGY [5] and On-To-Knowledge [6] were considered to be the most complete 
ones for building single ontologies from scratch. To deal with the collaborative and 
distributed development of ontologies, the DILIGENT methodology was proposed [7].  

In general, all these methodologies include only high-level guidelines for single ontology 
construction. Such guidelines normally (a) cover from the specification to the 
implementation, but only few of them provide shallow guides for reusing ontologies, and (b) 
are mainly targeted to researchers, thus, they are not described following a user-oriented 
approach. Detailed surveys and comparative studies of these methodologies are provided 
in [8]. 

3.1.1 The NeOn methodology 

In the context of the NeOn EU project (FP6-027595), the NeOn Methodology [9] [10] for 
ontology building was created. The NeOn Methodology Framework is a scenario-based 
methodology that provides prescriptive methodological guidelines for the development of 
ontology networks. The aim of this methodology is to accelerate the construction of 
ontologies and ontology networks by reusing available knowledge resources (ontologies, 
non-ontological resources and ontology design patterns). 

Knowledge resource reuse is becoming a widespread approach in the ontology engineering 
field because it can speed up the ontology development process. In this context, the NeOn 
Methodology specifies some guidelines for reusing different types of knowledge-aware 
resources. These guidelines mainly cover the following activities: 1) search repositories and 
registries for candidate resources that could satisfy the needs of the ontology network under 
development; 2) assess whether the set of candidate knowledge-aware resources are useful 
for building the ontology network; 3) select the best candidate resources for developing the 
ontology network on the basis of a set of criteria; and, 4) integrate the selected resources 
into the ontology network under construction. 

The key assets of the NeOn Methodology Framework are: 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 19 of 50 17/05/2019 
 

Contract No. H2020 –826172 

• A set of nine scenarios for building ontologies and ontology networks, emphasizing 
the reuse of ontological and non-ontological resources, the reengineering and 
merging. 

o Scenario 1: From specification to implementation. The ontology network is 
developed from scratch (without reusing existing resources). Developers 
should specify ontology requirements. After that, it is advised to carry out a 
search for potential resources to be reused. Then, the scheduling activity must 
be performed, and developers should follow the planning. 

o Scenario 2: Reusing and re-engineering non-ontological resources (NORs). 
Developers should carry out the NOR reuse process for deciding, according 
to the ontology requirements, which NORs can be reused to build the ontology 
network. Then, the selected NORs should be re-engineered into ontologies. 
See Section 3.2 for an instantiation of this scenario in the context of the so-
called Ontology Learning. 

o Scenario 3: Reusing ontological resources. Developers use ontological 
resources (ontologies as a whole, ontology modules, and/or ontology 
statements) to build ontology networks. 

o Scenario 4: Reusing and re-engineering ontological resources. Ontology 
developers reuse and re-engineer ontological resources. 

o Scenario 5: Reusing and merging ontological resources. This scenario arises 
when several ontological resources in the same domain are selected for reuse, 
and developers wish to create a new ontological resource with the selected 
resources.  

o Scenario 6: Reusing, merging and re-engineering ontological resources. 
Ontology developers reuse, merge, and re-engineer ontological resources. 
This scenario is similar to Scenario 5, but here developers decide to re-
engineer the set of merged resources. 

o Scenario 7: Reusing ontology design patterns (ODPs). Ontology developers 
access repositories to reuse ODPs. 

o Scenario 8: Restructuring ontological resources. Ontology developers 
restructure (e.g., modularize, prune, extend, and/or specialize) ontological 
resources to be integrated in the ontology network. 

o Scenario 9: Localizing ontological resources. Ontology developers adapt an 
ontology to other languages and culture communities, thus obtaining a 
multilingual ontology. 

• The NeOn Glossary of Processes and Activities, which identifies and defines the 
processes and activities carried out when ontology networks are collaboratively built 
by teams. 

• Methodological guidelines for different processes and activities of the ontology 
network development process, such as the reuse and reengineering of ontological 
and non-ontological resources, the ontology requirements specification, the ontology 
localization, the scheduling, among others. All processes and activities are described 
with (a) a guiding card, (b) a workflow, and (c) examples. 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 20 of 50 17/05/2019 
 

Contract No. H2020 –826172 

3.1.2 Collaborative ontology engineering with OnToology 

The previous section has focused on a comprehensive ontology engineering methodology 
such as the NeOn methodology, which is the one recommended for the ontology 
development activities in the context of the IF. 

In this section we focus on how some of the scenarios envisaged by the NeOn methodology 
are supported by tools, especially in the context of situations where a collaborative ontology 
engineering process is required (e.g., when multiple parties are contributing to the 
development of ontologies and want to make use of well-known software development 
practices in this context). Now that ontologies have been adopted in many software projects, 
it is clear that the ontology development phases, identified by the aforementioned 
methodologies, have to be included into the common software engineering practices used 
by software developers. Related work has already been done in the ontology engineering 
community to adapt ontology development to agile software development methodologies 
[11], and some initial work has been done on allowing collaborative ontology development 
throughout the use of common-practice software engineering tools (e.g., VoCol [12], Moki 
[13]). 

In [14], OnToology is described as an open source web application that detects the changes 
made over a git repository and triggers a series of activities for supporting the evaluation 
and publication stages of the ontology development process. OnToology integrates a suite 
of existing tools, and uses the files used to serialize ontologies (e.g., OWL files) as the main 
resource to work with. It is currently integrated with GitHub and integrations with other source 
code repository technologies are planned as part of its development roadmap. 

The steps to be used by a set of users working with OnToology for the development of their 
ontologies are presented in Figure 2. As it can be seen, the process is launched whenever 
a change in an ontology of a GitHub repository that is being watched by OnToology is 
pushed into GitHub. As a result of this, OnToology forks that repository and starts making 
use of a set of different tools related to the ontology development process (namely, Widoco 
for ontology documentation, AR2Dtool for diagram generation, Oops! for ontology 
evaluation, and vocabLite, if configured, for the generation of an ontology catalogue with the 
updated information). After all these tools/services are used, the results of their invocation 
are included in the corresponding forked repository and a pull request is made to the original 
GitHub repository, which can be accepted or not by the ontology developers in charge of 
the original repository. 

Users can also force the invocation of all the related services at any point in time, if they 
consider this necessary for whatever reason or want some changes in the configuration files 
for the invocation of any of these services to be done. Furthermore, OnToology generates 
a bundle that can be used to publish the ontology and its documentation in a Web server 
according to Linked Data principles, therefore enabling content negotiation for the ontology 
file and its corresponding terms. 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 21 of 50 17/05/2019 
 

Contract No. H2020 –826172 

 

Figure 2. Steps followed by OnToology (taken from [14]). 

 

3.1.3 Collaborative ontology engineering with other tools 

In recent years, different systems have been developed to support teams in the distributed 
development of ontologies. One of the best-known tools is the WebProtégé editor [15]. 
Besides the ontology edition functionalities, WebProtégé provides a discussion board and 
functions for annotating ontology terms. Once an ontology is generated, developers may 
resort to their local installation of Protégé to produce human-readable documentation and 
diagrams using a variety of plug-ins. 

Another approach is Moki [13], a collaborative tool for modeling ontologies based on 
MediaWiki. Moki provides either a light-weight view or a full source-code view of the 
ontology. It also integrates evaluation functionalities like model checklist and quality 
indicators. However, neither WebProtégé nor Moki integrate features for the online 
publication of the ontology. 

 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 22 of 50 17/05/2019 
 

Contract No. H2020 –826172 

Neologism [16] was also designed to provide support for the online development process of 
ontologies, as a Drupal-based vocabulary editor and publishing system. Neologism provided 
an automatic diagram creation that showed the classes and properties of a vocabulary. 
However, this system is no longer maintained.  

A more recent effort is VoCol [12], designed as a tool to help collaborative vocabulary 
development, inspired by agile software and content development methodologies, and using 
Git repositories to maintain the vocabulary-related files. VoCol provides support for project 
management, quality assurance, documentation and visualization components. Both 
Neologism and VoCol provide a complete encapsulated framework to publish ontologies 
and their documentation, relying on the user to deploy it. 

VocBench [17] is an open source web application for editing thesauri complying with the 
SKOS and SKOS-XL standards. VocBench allows for collaborative management of the 
overall editorial workflow, by introducing different roles with specific competencies, and 
provides features for content validation and publication of vocabularies. Furthermore, it 
provides a full history of changes and a SPARQL query service. However, VocBench does 
not provide any documentation or evaluation functionalities, and focuses only on SKOS 
models. 

3.2 ONTOLOGY LEARNING 

The techniques presented in Section 3.1 focused on the manual building of ontologies. 
Another – complementary, and not necessarily alternative – possibility for ontology creation 
is to automatically learn the elements of an ontology, which could then be manually refined 
as in Scenario 2 of Section 3.1.1. The steps of the ontology learning process (ontology 
learning layer cake [18]) include extracting terms, their synonyms, acquiring concepts and 
existing relationships among them in the text and, finally, inducing domain-related axioms 
and rules. In addition, a pre-processing task at the beginning of the process and an 
evaluation of the results at the end are necessary for enhancing the effectiveness of the 
learning. So far, several approaches have been proposed to tackle different stages of 
ontology learning which are summarized in the next sections. 

3.2.1 State of the art 

Up to now, various methodologies have been suggested so that the process of ontology 
learning from texts can be automatized, which include techniques in the fields of machine 
learning, text mining, knowledge representation and reasoning, information retrieval and 
natural language processing. 

These ontology learning techniques are classified into three main categories: linguistics, 
statistical and logical [19] and are applied to different stages of ontology learning task. Figure 
3 illustrates the main stages and different layers of ontology learning. 

 

Figure 3. Ontology Learning Layer Cake 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 23 of 50 17/05/2019 
 

Contract No. H2020 –826172 

3.2.2 Pre-processing 

In the pre-processing step of ontology learning the unstructured corpus should be ready for 
later tasks, by means of Natural Language Processing which provides linguistic tools. The 
most prominent techniques that are applied to the text in this stage are part of speech (PoS) 
tagging, parsing and lemmatization. 

Part of speech tagging: 

PoS tagging, grammatical tagging or word-category disambiguation is a linguistic technique 
for annotating words in the corpus with their corresponding part of speech, according to both 
its definition and its context. PoS algorithms fall into two categories, stochastic and rule 
based. A classical and widely used tool is Brill Tagger [20] which is a rule-based tagger 
capable of automatic learning of the rules. It is very simple and does not need large tables 
of statistics to capture contextual information. First, the tokenized words in the text are 
tagged according to their most probable part of speech in the dictionary and non-contextual 
features. Then, using iterative contextual rules and the errors from the previous stage, tags 
are transformed to reduce the amount of tagging errors. However, due to its inherent local 
non-deterministic behavior which reiterates the tags, it could be very slow in training and 
tagging stages (in the worst-case scenario the original implementation requires R∙K∙n steps 
for tagging a sequence of n words, demanding K words and using R rules) [21, 22]. Tree 
Tagger is a stochastic PoS tagger method in which transition probabilities are estimated 
using a decision tree. This method of tagging achieves 96.36% accuracy. Nevertheless, 
since most of the words in English are unambiguous and uncertain parts of speech of words 
are rarely used, assigning just the most probable tag without further transitions give an 
accuracy close to 90% [23]. 

Parsing: 

Parsing – or syntactic analysis – is the process of analyzing the grammatical structure of the 
words of sentences and building the corresponding parse tree. Principar [24] is a principle-
based parser for English language which is implemented in C++ according to the algorithm 
proposed in [25]. It applies a set of extraction and conversion rules to a lexicon with over 
more than 90000 entries. In addition, Link Grammar Parser is an open source tool written in 
C which develops algorithms for efficiently parsing in English by providing a formal 
grammatical system to encode the English grammar. Among statistical parsing systems, 
Stanford Parser utilizes an unlexicalized probabilistic context-free grammar (PCFG) [26] to 
parse the text. 

Lemmatization: 

Lemmatization is a linguistic pre-processing method for identification of the words' lemma 
(dictionary form) in the text from their inflected variants and bring them back to their base 
form [27]. For example, the words swims, ‘swimming’, ‘swam’ etc. should be converted to 
the dictionary form ‘swim’. Unlike stemming, lemmatization is dependent on the context 
surrounding the word and its part of speech, while a stemmer transforms words without 
considering the context; for example, the result of stemming for the word ‘meeting’ is always 
‘meet’, but a lemmatization algorithm would discriminate if it is a noun or verb. The 
consequence of this difference is that applying stemming would increase the recall, while 
the precision increases with lemmatization techniques. Both methods would reduce the 
dimensionality of the data [19]. 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 24 of 50 17/05/2019 
 

Contract No. H2020 –826172 

According to [27], the main problems in data-driven lemmatization algorithms are the 
generalization capability in case of unseen words, and disambiguation. Several context-
sensitive lemmatization algorithms utilize a hand-built morphological analyzer to rehash 
ambiguous words in languages [28], [29], [30], while some try to learn the lemmas (and tags) 
using the context to process unseen data, without an existing analyzer [31], [32]. However, 
there is no accurate measurement about to what extent the context would perform on 
unseen words. It is not only dependent on the amount of training data presented in a 
language, but also on the morphological regularity and characteristics of a language. 
Lematus [27] is a lemmatization system based on the neural machine translation framework  
[33] which uses an encoding and decoding model to learn context-sensitive lemmatization. 
Still, the actual relationships between the ambiguity level in a language, productivity6, and 
their correlation with lemmatization accuracy is unclear. One of the linguistic analysis tools 
is Stanford CoreNLP API7, which is written in Java and performs pre-processing tasks 
including lemmatization. This tool has been used in [34]. 

3.2.3 Ontology Learning Steps 

Terms/Concepts Extraction: 

The following are linguistic-based methods for domain-specific terms extraction: 

Syntactic analysis is a NLP-based method for extracting the set of terms and concepts in 
the text. It utilizes the syntactic structural properties of compound words in the text and the 
head-modifier principle, which suggests how a major class of compounds are formed. For 
example, the structure of the noun phrase could be used for extracting possible hierarchical 
terminologies such as hyponymy and meronymy [19]. The concept of head and modifier 
exists in the grammar of many languages, which suggests that in the syntactic construction 
of phrases, one of the units (or chunks) is called the head – or core – part of the phrase, and 
other words modify it; also, the core part is associated with the semantics of the phrase [35]. 
Since the grammatical structure of the language is used in this method, it can be applied to 
structured texts and operates on other languages too. However, before applying syntactic 
analysis, the text should be tagged and parsed, so preprocessing techniques play an 
important role. 

Subcategorization frame is a linguistic-based method for term/concept extraction [19], in 
which a set of rules are defined for generating and identifying different syntactic structures 
out of the base from (BF) of a given lexeme. This method is useful in case of a regular 
pattern and can be applied to generate constituents linked to the base form. For example, 
in English many verbs take a NP (Noun Phrase) as the subject (specifier) and another NP 
as direct object (complement). This grammatical structure can be defined by some 
deterministic rules (frames). In particular, a frame defines the number of words of a specific 
form a lexeme takes as its neighbors in a sentence. For example, the verb ‘to enjoy’ has two 
neighbors in the sentence ‘Bob enjoys reading’. Due to the inherent concept of 
subcategorization frame, it cannot be used in case of irregular behavior. 

                                                 
6 https://en.wikipedia.org/wiki/Productivity_(linguistics) 

7 http://stanfordnlp.github.io/CoreNLP/ 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 25 of 50 17/05/2019 
 

Contract No. H2020 –826172 

ASIUM [36] (Acquisition of SemantIc knowledge Using Machine learning method) is a 
cooperative8 machine learning-based system for knowledge acquisition in technical texts 
and restricted domains and for learning subcategorization frames of verbs and ontologies; 
it also provides automatic concept splitting using syntactic parsing disambiguation without 
manual annotations. The evaluation of learnt concepts is provided during the training step, 
but validation and adjustment are needed specifically if the texts and parsing method are 
noisy. 

Seed words are domain-specific terms which can be used as a base enhancement for other 
methodologies in order to extract terminologies. These initial keywords ensure that the 
words that are most semantically similar to the seeds are detected as the target concepts 
[19] [21] [22] [33] [37]. 

The following methods use statistical information and probabilistic methods for extracting 
terms, without considering their semantics. 

C-Value/NC-Value is a domain-independent method for automated multi-word extraction in 
technical texts. It incorporates linguistic and statistical approaches and scores combinations 
of words according to the probability that they have a valid concept in the text. The scoring 
function is a mixture of two values: the C value and the NC value [38]. The C value tries to 
extract nested terms and produces a ranked list of multi-word candidates based on their 
termhood possibility. Prior to that it applies PoS tagging and creates a stop-list to filter 
candidates based on their types (tags), to improve precision and recall. Its ranking function 
considers the following figures: 

1. the number of occurrences of the term 

2. the frequency of appearance as part of longer candidate term 

3. how many times the longer candidate has appeared 

4. the length of the candidate string (words). 

The NC value re-ranks the list by adding context information, which is a weighted sum of 
the words that have appeared with the candidate and can additionally reflect the real 
importance of a term in the domain, in the sense that neighbor words often reveal information 
about the term. For example, the termhood and importance of a NP appearing after the verb 
‘call’ is higher. This way the algorithm benefits from this information, too. As a result, the 
concentration of real terms would increase compared to the first list. Then, the resulting 
ranked list can be scanned by experts to check the validity of the terms up to a certain point. 
Although the system is fully automated and independent from other sources such as external 
dictionaries, its outcome should still be validated by domain experts at the final stage. 

The main idea of Contrastive Analysis (Domain Relevance and Domain Consensus) is 
to extract domain-related terms by filtering out the irrelevant ones [19]. OntoLearn [39] is an 
ontology engineering platform which uses contrastive analysis in the concept extraction 
stage. After retrieving a list of syntactically promising candidate terms (possibly multi-words), 
it measures two entropy-related values, namely domain relevance and domain consensus, 
using different domains. Domain relevance measures the specificity of the term with respect 
to the target domain, and more specifically the ratio of information given by terms in the 
target domain to the sum of the information it gives in all the domains. On the other hand, 
domain consensus suggests that if a word is a term used in a domain, it should appear in 
                                                 
8 Asium is not fully automated, but provides interactive features during the learning task. 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 26 of 50 17/05/2019 
 

Contract No. H2020 –826172 

several documents of that domain. OntoLearn has been experimented in two European 
projects (FETISH and HARMONISE9) as the basic semantic interoperability system [40]. 

Co-occurrence analysis is a method to extract terms and relations among them by locating 
terms that co-occur in different forms such as phrases and relations. The strength of 
similarity among two terms or relations are quantified by different metrics, including Mutual 
Information, Chi-Square, Cosine and Dice Similarity [41]. 

Latent Semantic Analysis (LSA) is a statistical method for finding concepts and relations. 
The main idea in LSA is that the words occurring together have more similar meanings [19]. 
Unlike co-occurrence analysis, it does not consider just pairwise co-occurrence of the terms; 
rather, it keeps a detailed pattern of which words have occurred in which document in the 
corpora. Firstly, it builds a matrix that represents the frequency of each term in each 
document. Then, Singular Value Decomposition (SVD) is applied to the term-document 
matrix in order to reduce the dimensionality without losing the similarity structure. In other 
words, the meaning of each term is a reflection of the meaning of the document containing 
the term and the meaning of the document is an average of the terms in the document. 
However, LSA does not benefit from the order of the words in the sentence, or from 
morphology [42]. 

Clustering is an unsupervised learning method which groups similar objects together. 
Among clustering techniques, Contextual Concept Discovery (CCD) [43] is a hierarchical 
clustering algorithm based on incremental segmentation of the data by employing k-means 
several times to extract ontological concepts. The algorithm clusters the candidate terms 
into three groups: the advisable group, which contain the set of terms validated by domain 
experts; the improper cluster, which contains terms with more than one concept; and the 
unknown group, which are terms without any semantic relation and which are not validated 
by domain experts. The algorithm performance was evaluated on HTML documents in the 
tourism domain. 

Relation Extraction: 

In addition to extracting concepts, the relation among the concepts should be extracted too. 
These relations may be taxonomic or non-taxonomic. In another categorization, the 
techniques for extracting concepts’ relations are either statistical-based or linguistic-based. 
The following are the linguistic-based methods for relation extraction. 

Dependency Analysis extracts relations according to the existing dependencies among the 
words in the sentence. First the sentences are parsed and tagged to obtain a syntax tree. 
For each tree a dependency graph is created, in which each morphologically simplified word 
is a node and is connected to the governor (syntactic head) of its closest neighbor phrase. 
The governor is the word in a phrase whose part of speech determines the syntactic 
category of the whole phrase. Finally, the shortest path between two entities in the tree, 
following the dependency relations, is their semantic relationship [44]. 

The lexico-Syntactic Pattern method looks for dependency paths in the dependency tree 
that represents the syntactic relations between words. It makes tuples of the words and the 
relations, where the relations are specific links between two words or phrases in the tree. 
As an example, [45] defined a lexico-syntactic patterns space such that it includes the links 
(the shortest paths) equal or less than four between any two nouns in a dependency tree. 

                                                 
9 ITS-13015 (FETISH) and ITS-29329 (HARMONISE) [17]. 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 27 of 50 17/05/2019 
 

Contract No. H2020 –826172 

The followings are the statistical methods for relation extraction. 

Term Subsumption tries to extract hierarchical relations between terms by comparing their 
level of abstraction in a document using conditional probability. The algorithm states that 
term t1 is more general than term t2 if the probability of observing term t1 in the presence of 
term t2 is higher than the probability of observing t2 when t1 is in the document [19] (P(t1|t2) 
> P(t2|t1)). 

The Formal Concept Analysis (FCA) algorithm builds concept hierarchies/taxonomic 
relations in ontology learning based on the idea that objects are linked to their features 
(attributes) in the text. In the OntoGain system [46], the objects are terms and the attributes 
are defined as the terms’ syntactic dependencies in the corresponding dependency tree. It 
constructs a formal context matrix consisting of object-attributes pairs as the input and 
measures the conditional probability of the pairs. Then, it extracts the relations above a 
threshold. The evaluation of relation extraction compared to agglomerative clustering on 
medical domain shows that FCA is not only more complex (O(2n)), but also less accurate 
[46] than bottom-up clustering approaches, which iteratively merge clusters and whose 
complexity is O(N2). Contento [47] is an ontology construction kit based on FCA that 
provides the user a bottom up ontology construction in four stages: 1) extraction of data from 
SPARQL endpoints; 2) generating a FCA lattice; 3) annotating and prune the conceptual 
lattice; 4) generating the OWL ontology. 

Hierarchical Clustering algorithms are usually employed to extract taxonomic relations 
among concepts. They are categorized into two main groups according to their approach in 
the cluster construction: agglomerative clustering (bottom up) [48] and divisive clustering 
(top down). For measuring the similarity among the data, they employ different metrics such 
as Cosine or Jaccard similarity. Agglomerative clustering combines the most similar 
elements progressively to reach to a certain stage in which most optimal concepts are 
present. To compute cluster similarity three approaches can be applied: single linkage, 
complete linkage and average linkage. Divisive clustering, instead, considers a single cluster 
which includes all the elements. Then, it iteratively splits large clusters into smaller ones by 
applying k-means or other clustering algorithms [49]. 

Foundational Ontology and Reasoner-enhanced axiomatiZAtion (FORZA) [50] is a 
generic approach for solving some ambiguities while obtaining the ontology and is integrated 
in the MoKi ontology development tool. Particularly, it aims to assist in acquiring part-whole 
relationships among objects, also axiom extraction by applying decision diagrams. 

Association Rule Mining (ARM) is a data mining approach that is mostly used for 
extracting non taxonomic relations and patterns among concepts by exploration of the rules 
in order to predict the co-occurrence of entities. The most popular algorithms for mining 
association rules are the Apriori method and Frequent pattern (FP) growth. 

Axiom Extraction: 

Inductive Logic Programming (ILP): 

In the last stage of ontology learning ILP is often used for automatic extraction of rules out 
of schematic axioms utilizing background knowledge and a set of examples which are 
represented as a logical database of facts [19]. More precisely, given background 
knowledge B, expressed as a set of predicate definitions, a set of observations consisting 
of positive examples E+ and negative examples E-, an ILP will construct a predicate logic 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 28 of 50 17/05/2019 
 

Contract No. H2020 –826172 

formula H such that i) all the possible examples in E+ can be logically derived from B ∧ H, 

and ii) no negative example in E- can be logically derived from B ∧ H [51]. 

3.2.4 Evaluation: 

After acquiring the ontology, it should be evaluated to be fit to the users’ requirements 
considering the following factors: the lexical correctness of the obtained ontology, its 
coverage for the concepts, wellness at taxonomic relations and the adequacy of its non-
taxonomic relations [19]. However, since the whole process is composed of multiple stages, 
the evaluation is a complex task. The techniques used for the evaluation can be categorized 
into four groups according to the kind of target ontologies and the purpose of the evaluation: 

Gold standard-based evaluation methods provide a frequent and large-scale assessment 
of the ontology by comparing the obtained ontology with a standard benchmark called 
reference ontology which is an ideal model, possibly formalized by experts or acquired from 
the corpus of that specific domain. The benchmark should be human-created or a reliable 
standard from a similar domain so that completeness, accuracy and consistency can be truly 
validated. Golden standard-based methods are also referred to as ontology mapping or 
ontology alignment. 

Application-based (or task-based) methods are task-oriented techniques which evaluate 
the performance of the obtained ontology on the basis of its outcome in a particular 
application, without considering its structural properties. They reveal inconsistent concepts 
and the level of adaptability of the ontology in that domain and measure the compatibility to 
different ontology learning tools. They evaluate the correctness, coverage, adequacy and 
wellness of obtained ontology in the desired application. 

Data driven-based (or corpus-based) methods measure the coverage of the acquired 
ontology by comparing target ontology with a particular corpus. To do so, they use domain-
specific knowledge sources. They assess similar metrics to golden standard-based 
techniques such as completeness, conciseness and accuracy. However, instead of a 
reference ontology they require a domain-specific corpus. 

Human or criteria-based evaluation techniques are usually used to select the best ontology 
among many existing ones. For doing that, several criteria are defined and formulated based 
on which ontologies are scored and ranked. The major drawback is the high manual cost 
required in terms of time and effort in the implementation. 

3.2.5 Bridging the gap between domain knowledge and ontology engineering: 

Usually creating a suitable ontological structure is a difficult task because, firstly, it requires 
an extensive effort of domain experts and, secondly, available tools for constructing 
ontologies are often too complex for domain experts who have limited skills in engineering 
tools such as OWL and RDF. This leads to hinder the process of ontology construction. [52] 
proposes a holistic approach for constructing a conceptual ontology to support domain 
experts in ontology authoring. A conceptual ontology combines the human readability and 
understandability of an ontology, which is domain knowledge independent from the logical 
formalism, and machine interpretability, which is a logical representation of the ontology. In 
other words, it provides a descriptive logic understandable for both machine and humans by 
introducing three integrated components: 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 29 of 50 17/05/2019 
 

Contract No. H2020 –826172 

1) Kanga is a methodology that involves domain experts in authoring the ontology. It covers 
conceptual aspects written by domain experts and the logical aspects of converting (either 
manually or automatically) the conceptual ontology into a Semantic Web language such 
as OWL. The following table presents the steps included: 

Steps: Responsible 

1. Identification of the scope, purpose and other 
requirements of the ontology 

domain experts 

2. Collecting source knowledge and documents domain experts 

3. Creating a knowledge glossary containing 
ontology content 

domain experts 

4. Formal definition of core concepts and 
relationships using English sentences 

ontology engineers (mainly) 

5. Conversion of English sentences into OWL. ontology engineers (mainly) 

2) Rabbit is a controlled natural language10 (CNL) to automate the stated process and to 
encode the knowledge which is going to be converted to OWL. The main aim of Rabbit is 
providing an understandable platform for domain experts to express not only the axioms, 
but also the necessary details of the grammar while establishing a well-defined grammar 
to be translated to OWL systematically. 

3) ROO (Rabbit to OWL Ontology authoring) is a friendly user interface which guides target 
users about the phases of constructing an appropriate conceptual ontology in Rabbit CNL 
and then convert the sentences to a logical form. 

The instance-based learning method is an approach for extracting structured data from 
Web pages by comparing new instances to the existing ones based on the idea that 
structured data are usually created according to some fixed layouts, so unlike classic 
instance-based learning, [53] provides an approach in which templates can be obtained by 
learning from a single labeled instance. The requirement is an initial set of some labeled 
instances, then new instances can be compared to them. Similarity of data is measured by 
a method called “sufficient match”, which exploits the HTML markup. Two instances are 
sufficiently similar if a minimum number of tokens in the new instance matches with the 
prefix and suffix tokens of a labeled instance. 

3.3 UML-BASED ONTOLOGY CREATION 

UML-based approaches to ontology creation define mechanisms to automatically generate 
ontologies from UML diagrams through suitable transformations. We can identify two broad 
categories of techniques: 

• Model-driven approaches, in which UML diagrams (usually conforming to some 
specialized UML profile) are used as a high-level notation for describing the features 
of ontologies; in this case, ontologies are produced through translation of the UML 
models into declarations in a suitable ontology description language (usually OWL). 

                                                 
10 CNL (Controlled Natural Language) is a subset of natural language which is parsable by a computer, and expressive enough for non-

specialists 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 30 of 50 17/05/2019 
 

Contract No. H2020 –826172 

• Techniques in which ontologies are extracted from existing, plain (i.e., not conforming 
to a specialised profile) UML Class Diagrams. 

Model-driven approaches are based on the idea of using techniques from the software 
engineering domain to help domain experts produce ontologies without having to learn the 
technicalities of ontology definition. These techniques are based on the following 
ingredients: 

• A high-level modelling notation – typically a UML profile – which is used by domain 
experts to describe the elements and constraints of the ontology. 

• A transformation technique, which is capable of generating declarations in a target 
ontology description language (e.g., OWL or one of its subsets) from the parsing of 
the elements of the UML diagrams. 

The approach described by Gašević et al. in [54] belongs to this category of works. 

Kim and Lee [55] introduce a model-driven approach for the creation of semantically rich 
descriptions of web services given in terms of the OWL-S language. The approach of [55] 
relies on a pair of transformations. First, ontological concepts are imported in UML models 
through a translation of OWL declarations into the elements of a UML Class Diagram. These 
elements are then used in UML Sequence and Activity Diagrams (enriched with suitable 
stereotypes) to describe the process executed by the web service. Finally, the UML 
diagrams are translated into OWL-S descriptions. 

Approaches for the extraction of ontologies from existing (plain) UML diagrams aim to 
reuse existing UML models, which already contain codified information about many different 
domains, to facilitate the creation of formal ontologies. These approaches transform the 
elements of UML Class Diagrams (classes, associations, attributes, objects, etc.) into 
corresponding ontological concepts. For example, UML classes are translated into OWL 
classes, UML attributes are translated into data and object properties, and so on. Examples 
of such approaches can be found in [56] and [57] 

The approaches presented in this section could be used to facilitate the importing of existing 
data models – such as for example the Transmodel11  and NetEx12  – in the Shift2Rail 
Interoperability Framework. 

3.4 DATA MAPPING TECHNIQUES 

In the last years, the need to expose relational data on the Web has considerably increased. 
On the other side, the use of the Resource Description Framework (RDF) [58] to represent 
data on the Web can ease their integration and retrieval, exploiting the RDF semantics and 
mechanisms. Moreover, the RDF data representation lets data be accessible both for 
humans and for machines [59]. 

The techniques that take an RDB schema and data as an input and produce one or more 
RDF graphs has given rise to the RDB2RDF Mapping Language (R2RML) as a standard 
recommendation from the W3C consortium [60]. 

                                                 
11 http://www.transmodel-cen.eu 

12 http://netex-cen.eu 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 31 of 50 17/05/2019 
 

Contract No. H2020 –826172 

Recently, some researchers have proposed the RDF Mapping Language (RML), i.e. an 
extension of R2RML to support mappings of data sources in other structured formats, like 
CSV, XML and JSON [61]. 

When a reference conceptual model is available, for example in the form of a Web Ontology 
Language (OWL) [62] ontology, the need arises to use that model to query potentially 
sources of data, which are semantically homogeneous but syntactically/structurally 
heterogeneous. This approach is usually referred to as Ontology-based Data Access 
(OBDA), i.e. a new paradigm to access data sources based on the use of knowledge 
representation and reasoning techniques [63]. 

 

Figure 4: any-to-one approach for semantic interoperability overview 

When two or more heterogeneous systems need to interoperate, the any-to-one approach 
for semantic interoperability has been proposed [64]. In this context, a reference ontology is 
considered as a conceptual reference point for all involved systems and data are converted 
between sources and the reference ontology. Since ontologies usually represent a higher 
level of abstraction with respect to other structured formats, the translation from a data 
source to the ontology is called “lifting”, while the opposite transformation is called “lowering” 
[65]. In this sense, mapping from source A to source B can be viewed as a two-step process: 
lifting from A to the reference ontology and then lowering from reference ontology to B (see 
Figure 4). 

Moreover, the reverse process from an ontological format to its original structure (i.e., the 
lowering) by means of the same mapping used for the lifting has been investigated (for the 
CSV format) [66]. The possibility of reversing the conversion process from source A to the 
ontological format would imply that a single mapping definition is needed, i.e. the lifting 
mapping for source A, because this mapping would automatically represent also its lowering. 
Reverse mapping, however, is still an open research problem. 

In this way, mapping source A to B, to whatever source N, could be approached as a 
modular process, made by reusable mapping definition of the i-th source to the reference 
ontology. 

Below is given a brief description for each of the aforementioned techniques. 

3.4.1 OBDA 

The key idea of OBDA is to provide users with access to the information from the data 
sources through a three-level architecture, constituted by the ontology, the sources, and the 

Semantic model 
(reference ontology)

Syntactic model 
(Standard A)

Syntactic model 
(Standard B)

lifting & lowering 

specification

lifting & lowering 

specification



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 32 of 50 17/05/2019 
 

Contract No. H2020 –826172 

mapping between the two (see Figure 5). The ontology is a formal description of the domain 
of interest, and is the heart of the system. Through this architecture, OBDA provides a 
semantic end-to-end connection between users and data sources, allowing users to directly 
query data spread across multiple distributed sources. 

 

Figure 5: OBDA overview 

Using the familiar vocabulary of the ontology, the user formulates queries over the ontology 
using the SPARQL Protocol and RDF Query Language (SPARQL) [67]; SPARQL queries 
are then transformed, through the mapping layer, into SQL queries over the underlying 
relational databases. 

Tools implementing an OBDA approach include: 

• Karma: https://github.com/usc-isi-i2/Web-Karma 

• Ontop: https://github.com/ontop/ontop 

3.4.2 R2RML 

R2RML is a language for expressing customized mappings from relational databases to 
RDF datasets. Such mappings provide the ability to view existing relational data in the RDF 
data model, expressed in a structure and target vocabulary of the mapping author’s choice. 

Every R2RML mapping is tailored to a specific database schema and target vocabulary. The 
input to an R2RML mapping is a relational database that conforms to that schema. The 
output is an RDF dataset, which uses predicates and types from the target vocabulary. The 
mapping is conceptual: R2RML processors can materialize the output data, offer virtual 
access through an interface that queries the underlying database, or offer any other access 
means to the output RDF dataset. 

The data consumer essentially can access the (virtual or materialized) RDF data in different 
ways: 

https://github.com/usc-isi-i2/Web-Karma
https://github.com/ontop/ontop


 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 33 of 50 17/05/2019 
 

Contract No. H2020 –826172 

1. Query access, which means the agent issues a SPARQL query against an endpoint 
exposed by the system and processes the results (typically the result is a SPARQL 
result set in XML or JSON). 

2. Entity-level access, which means the agent performs an HTTP GET on a URI 
exposed by the system and processes the result (typically the result is an RDF graph). 

3. Dump access, which means the agent performs an HTTP GET on dump of the entire 
RDF graph, for example in Extract, Transform, and Load (ETL) processes. 

R2RML mappings are themselves expressed as RDF graphs.  

The R2RML specification has a companion that defines a Direct Mapping (DM) from 
relational databases to RDF [68]. In the DM of a database, the structure of the resulting RDF 
graph directly reflects the structure of the database, the target RDF vocabulary directly 
reflects the names of database schema elements, and neither structure nor target 
vocabulary can be changed. DM can be used when a pre-existing target vocabulary is not 
available. With R2RML, on the other hand, a mapping author can define highly customized 
views over the relational data. 

Tools implementing R2RML include: 

• Db2triples - R2RML and DM implementation: https://github.com/antidot/db2triples 

• R2RML parser: https://github.com/nkons/r2rml-parser 

• Morph - RDB2RDF tool using R2RML mappings: https://github.com/jpcik/morph 
 

3.4.3 RML 

RML [61] is a generic scalable mapping language defined to express rules that map data in 
heterogeneous structures and serializations to the RDF data model. Such mappings 
describe how existing data can be represented using the RDF data model. RML is based on 
and extends R2RML, which is defined to express customized mappings only from relational 
databases. 

An RML mapping is not tailored to a specific database schema as an R2RML mapping, but 
it can be defined for data in any other source format (currently defined for data sources of 
structured formats such as CSV, XML, and JSON). RML keeps the mapping definitions as 
in R2RML, but it excludes its database-specific references from the core model of the 
mapping definition. RML provides a generic way of defining the mappings that is easily 
transferable to cover references to other data structures. Thus, RML is a generic approach 
combined with case-specific extensions, but it always remains backward-compatible with 
R2RML as relational databases represent such a specific case. 

The input to an RML mapping can be any data source. The output is an RDF dataset that 
uses predicates and types from the target vocabulary. In RML, like in R2RML, the mapping 
definitions are expressed as RDF graphs13. 

Tools implementing RML include: 

• RML mapper: https://github.com/RMLio/rmlmapper-java  

                                                 
13 http://rml.io/index.html 

https://github.com/antidot/db2triples
https://github.com/nkons/r2rml-parser
https://github.com/jpcik/morph
https://github.com/RMLio/rmlmapper-java
http://rml.io/index.html


 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 34 of 50 17/05/2019 
 

Contract No. H2020 –826172 

• RML editor: http://rml.io/RMLeditor  

• RML validator: https://github.com/RMLio/RML-Validator 

• RML engine: https://github.com/carml/carml 

3.4.4 Reversing RML 

After defining an RML mapping for the lifting transformation of a data source, it would be 
very useful to “reverse” the direction of the transformation, in order to realize the lowering 
process, converting back the data expressed in the reference ontology to the original source 
format. However, this reverse mapping is not always possible and can pose a number of 
issues making it a very challenging task to accomplish; investigations exist that studied the 
assumptions and constraints under which the reverse operation is feasible. 

In the case of column-based data sources, some work [66] was done to perform the reverse 
process for transforming an RDF dataset into its CSV tabular structure, through the use of 
the same RML mapping document that was used to generate the set of RDF triples. 

To reach the goal a pair of assumptions have been made: the first is related to the set of 
RML mapping rules used to expose the CSV data source in RDF; the second concerns the 
implicit cardinality constraints of the associations between the columns of the CSV data 
source. Informally, the assumptions are as follows: 

1. Dependency Tree Assumption: the graph underlying the mapping rules is one n-ary 
tree, i.e. it will have: 

a. only one vertex, the root, that does not have incoming edges,  

b. one or more vertices, leaves, that do not have outgoing edges,  

c. there is at most one path (always starting from the root node) that connects 
two nodes and  

d. each node has no more than n children. 

2. Implicit Cardinality Restrictions: the original CSV data source, from which the RDF 
dataset was generated, has associations between columns with only 0:0 or 1:1 
cardinality constraints. 

Those assumptions seem very restrictive; however, they are verified when the CSV data 
source has a structure containing at least one column with unique value that could be used 
as key and the RML rules in the mapping are extended to keep links between RDF triples 
that refer to the same row [69]. 

This proposed approach is implemented in the tool available at: 
https://bitbucket.org/carloallocca/rml2csv 

 

 

 
 

http://rml.io/RMLeditor
https://github.com/RMLio/RML-Validator
https://github.com/carml/carml
https://bitbucket.org/carloallocca/rml2csv


 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 35 of 50 17/05/2019 
 

Contract No. H2020 –826172 

3.5 SEMANTIC DISCOVERY 

With the term “Semantic discovery” we mean the description of resources by users in a 
catalogue via controlled vocabularies, and the techniques that can be used to let users 
access such knowledge. Such resources can be (among the others) datasets, data models 
or service descriptions. 

Resource descriptions are the key element to let users discover what is contained in an 
asset management catalogue. Different vocabularies have been proposed over the years to 
describe metadata, and in the following we will describe some of the most commonly used 
ones. 

We will then analyse some techniques that have been proposed to allow users to query an 
RDF repository in a controlled way via Web API. Such techniques allow exposing only a 
subset of the whole information contained in a repository in order to comply with different 
user authorization profiles and to streamline checking the users’ behaviour. 

3.5.1 Catalogue metadata vocabularies 

Data Catalogue Vocabulary (DCAT) [70] is an RDF vocabulary designed to facilitate 
interoperability between data catalogs published on the Web. The basic idea of DCAT is to 
model a Catalogue, which is composed by several Datasets, each one having different 
embodiments, as depicted in Figure 6. 

 

 

Figure 6 DCAT data model 

DCAT allows defining different Application Profiles, which are specifications that re-use 
terms from one or more base standards, adding more specificity by identifying mandatory, 
recommended and optional elements to be used for a specific application, as well as 
recommendations for controlled vocabularies to be used.  



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 36 of 50 17/05/2019 
 

Contract No. H2020 –826172 

The DCAT Application Profile for data portals in Europe (DCAT-AP) is a specification based 
on the DCAT developed by W3C. 

This application profile is a specification for metadata records to meet the specific application 
needs of data portals in Europe while providing semantic interoperability with other 
applications on the basis of reuse of established controlled vocabularies (e.g., EuroVoc) and 
mappings to existing metadata vocabularies (e.g., Dublin Core, SDMX, INSPIRE metadata). 

Since it is focused on data portals, the DCAT-AP use case is the publication of generic 
datasets without further interest in a fine-grained definition of the purpose or type of the 
specific dataset. 

Asset Description Metadata Schema  (ADMS) [71] is a profile of DCAT, used to describe 
semantic assets (or just 'Assets'), defined as highly reusable metadata (e.g., XML schemata, 
generic data models) and reference data (e.g., code lists, taxonomies, dictionaries, 
vocabularies) that are used for eGovernment system development. Compared to DCAT-AP, 
this profile adds the possibility to differentiate Assets into homogeneous categories (Asset 
Types). This DCAT profile is therefore highly relevant for the Asset Manager component of 
the IF, because it provides a schema for the publication of the minimum set of information 
that can allow the publication of information about an asset in the Catalogue. 

An ADMS Asset is an entity reflecting the intellectual content of an Asset and represents 
those characteristics that are independent of its physical embodiment. This abstract entity 
combines the FRBR14 entities work (a distinct intellectual or artistic creation) and expression 
(the intellectual or artistic realization of a work). 

Each Asset belongs to one or more Asset Types, which are classifications of assets 
according to a controlled vocabulary. Each Asset is then made available via a Publisher 
organization. The physical embodiment of an Asset is called an Asset Distribution. A specific 
Asset may have zero or more Distributions. A Distribution is typically a downloadable 
computer file (but in principle it could also be a paper document or API response) that 
implements the intellectual content of an Asset. A Distribution is associated with one and 
only one Asset, while all Distributions of an Asset share the same intellectual content in 
different physical formats. 

3.5.2 Service descriptors 

Service orientation has increasingly been adopted as one of the main approaches for 
developing complex distributed systems from reusable components called services. Just as 
semantics has brought significant benefits to search, integration, and analysis of data, it is 
also seen as a key to achieving a greater level of automation to service-orientation. This led 
to research and development, as well as standardization efforts on Semantic Web Services. 
Such activities have involved developing conceptual models or ontologies, algorithms, and 
engines that could support machines in semi-automatically or automatically discovering, 
selecting, composing, orchestrating, mediating, and executing services, with the aim to use 
semantic technologies to help with the following tasks:  

• discovery, which is the task of matching known Web services against a user goal and 
returning the services that can satisfy that goal; 

                                                 
14 https://en.wikipedia.org/wiki/Functional_Requirements_for_Bibliographic_Records 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 37 of 50 17/05/2019 
 

Contract No. H2020 –826172 

• ranking, which orders the discovered services based on user requirements and 
preferences so the best service can be selected;  

• composition, which puts together multiple services when no single service can fulfil 
the whole goal;  

• invocation, which communicates with a specific service to execute its functionality;  

• and lastly mediation, which resolves any arising heterogeneities. 

The initial attempts in Semantic Web Services were aimed at providing the full set of 
automated tasks, and resulted in OWL-S [72] and Web Service Modelling Ontology (WSMO) 
[73] initiatives. Such attempts anyhow failed due to the effort in providing an effective and 
cost-saving environment for the implementation of semantically-enabled services. WSMO 
in particular provided a very powerful language (WSML [74]) to describe pre-conditions, 
input, output and effects of a web service operation. The metamodel was composed by Web 
Services, Mediators, Ontologies and Goals, as depicted in Figure 7. 

 

Figure 7. WSMO metamodel 

Instead of directly invoking a Web Service operation, the user had to define a Goal, which 
was to be fulfilled by the Semantic Web Services Engine by orchestrating and executing 
services in a complex process. The same approach was then adapted to W3C Semantic 
Web stack in WSMO-Lite, abandoning the dedicated WSML language in favour of RDF and 
RIF (Rule Interchange Format [75]), as depicted in Figure 8.  



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 38 of 50 17/05/2019 
 

Contract No. H2020 –826172 

 

Figure 8. How WSMO-Lite concepts can be referenced in WSDL 

While Web Services have a well-defined and accepted set of standards (SOAP and WSDL), 
there is no generally accepted machine-processable description language for RESTful Web 
services. hRESTS [76] was an attempt to define a microformat to embed structured service 
descriptions inside the HTML pages describing a service documentation. hRESTS was 
made up of a number of HTML classes directly corresponding to the various parts of the 
service model depicted in Figure 9.  

 

Figure 9. hRESTS model of a Web Service 

The interaction of a client with a RESTful service is seen as a series of Operations where 
the client sends a request to a resource (using one of the HTTP methods GET, POST, PUT 
or DELETE), and receives a response that may link to further useful resources. A RESTful 
Web service has a number of operations, each with potential Inputs and Outputs, and a 
hypertext graph structure where the outputs of one operation may link to other operations.  

While hRESTS provided the technical means to add structured descriptions of a RESTful 
service, it lacked the expressivity to link to an existing formal ontology. MicroWSMO [77] 
was an extension to hRESTS providing such link, with the same purpose of SAWSDL [78] 
in the Web Services stack, as depicted in Figure 10. 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 39 of 50 17/05/2019 
 

Contract No. H2020 –826172 

 

Figure 10. Similarities between WSDL and hRESTS and between SAWSDL and 
MicroWSMO 

 

Mimicking SAWSDL specifications, MicroWSMO introduced the following three types of 
HTML link relations: 

• model indicates that the link is a model reference to a concept expressed in a WSMO-
Lite ontology; 

• lifting and lowering denote links to the respective data transformations. 

This enabled to extend the use the WSMO stack to RESTful services, and allowed for the 
provision of automatic discovery, orchestration and execution of services. 

Such richness in expressivity came anyway at a cost, since the effort to create a working 
description of a service was comparable to the effort spent in implementing the service itself. 
Moreover, it did not deal with trust, since it was not possible to force the engine to restrict 
the execution to well-known services. Once the goal was sent to the engine, there was no 
way of driving the computation. Such heavyweight approaches aimed at automatic 
orchestration and execution were therefore abandoned in favour of lighter approaches 
tailored to ease discovery and selection. 

Lightweight approaches to semantic descriptions focus only on service discovery, thus 
leaving out ranking based on non-functional properties, automatic composition and 
execution. They therefore offer an aid to the developer during the task of finding services to 
be integrated in an application. 

One of such approaches is Hydra [79], which has been proposed as a lightweight vocabulary 
to create hypermedia-driven RESTful APIs. The basic idea behind Hydra is to provide a 
vocabulary which enables a server to advertise valid state transitions to a client. A client can 
then use this information to construct HTTP requests which modify the server’s state so that 
a certain desired goal is achieved. All the information about the valid state transitions is 
exchanged in a machine-processable way at runtime instead of being hardcoded into the 
client at design time. As can be noticed in Figure 11, the Hydra vocabulary revolves around 
the main “Operation” concept, which is used to link input and output to ontology concepts. 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 40 of 50 17/05/2019 
 

Contract No. H2020 –826172 

 

Figure 11. Hydra ontology 

Hydra does not reuse already existing RESTful API description specification, and it rather 
proposes the whole stack from the vocabulary to the generation of human-readable API 
documentation. 

A different approach, proposed in [80], consists in using the existing extension points defined 
in the OpenAPI specifications (OAS) to add links to ontological concepts and relations. The 
article describes a highly effective way of adding semantics to machine-readable 
descriptions without disrupting the existing toolchain. The article envisions the usage of the 
following attributes to represent a mapping to existing concepts in an ontology: 

• x-refersTo: it specifies the concept in a semantic model that best describes an Open 
API Specification (OAS) element. 

• x-kindOf: it specifies a specialization that exists between an OAS element and a 
concept in a semantic model. The property is mainly used to declare that a concept 
in a semantic model is too generic to describe the specified model, whereas a more 
specific subtype (if it exists) should be considered more appropriate. 

• x-mapsTo: it indicates that an OAS element is semantically similar to another OAS 
element. 

• x-collectionOn: it indicates that a model describes a collection over a specific 
property. 

• x-onResource: it denotes that the specific Tag Object refers to a resource described 
by a Schema Object. 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 41 of 50 17/05/2019 
 

Contract No. H2020 –826172 

• x-operationType: the property is used to provide semantic information on the type of 
operation. The subtypes of the Action concept in the Schema.org vocabulary can be 
used as values of the property. 

The elements above are then exploited to create instances of the concepts of the OpenAPI 
ontology, whose model is represented in Figure 12. 

 

Figure 12. OpenAPI ontology 

 

3.5.3 GraphQL 

Today’s web and mobile applications are often data-driven and require large sets of data 
combining related resources. Accessing those data by using a REST-based API often 
requires us to do multiple round-trips to collect everything that is needed. As REST, 
GraphQL is an API design architecture, but with a different approach which is much more 
flexible. The main and most important difference is that GraphQL is not dealing with 
dedicated resources. The main feature of GraphQL is to be able to send queries rather than 
asking for the representation of a resource as a whole.  

GraphQL requires the definition of a data schema which tells the users which data they can 
query. The two main selling points of this technology, namely the query capabilities and the 
schema, are quite similar to what SPARQL and ontologies are offering in the Semantic Web 
stack. In a sense, GraphQL can be seen as a simplified way to define a query over a graph 
with respect to SPARQL, with the main difference being that SPARQL does not assume a 
fixed schema or vocabulary. In certain applications, where the data schema is well known 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 42 of 50 17/05/2019 
 

Contract No. H2020 –826172 

and fixed, GraphQL can be much easier to understand with respect to SPARQL, and more 
efficient in terms of bandwidth with respect to REST. 

With the aim of allowing the usage of GraphQL technology over RDF data, GraphQL-LD has 
been proposed as an extension to GraphQL to allow queries with a JSON-LD context [81]. 
The approach consists of an algorithm that translates GraphQL-LD queries to SPARQL 
algebra as depicted in Figure 13. This allows such queries to be used as an alternative input 
to SPARQL engines. 

 

 

Figure 13. GraphQL rewriting in GraphQL-LD 

HyperGraphQL [82] is another attempt to expose access to RDF sources through GraphQL 
queries and emit results as JSON-LD. The main difference with the GraphQL-LD approach 
is that HyperGraphQL is implemented by means of an intermediary service sitting between 
the GraphQL client and the RDF repository, while GraphQL performs a query translation 
and directly executes the native query. 

3.5.4 Query templates for data access 

GraphQL is emerging as an efficient technology which overcomes some of the limitations of 
the REST approach. Its success is showing that exposing a query endpoint and letting a 
user ask for whatever data he/she wants can lead to bandwidth-friendly applications. 
Anyway, such approach has a few drawbacks related to security and how the application 
owner can monitor what the users are doing. Securing a query endpoint is much more 
difficult than securing an API endpoint, because if the GraphQL schema is complex enough 
there is the possibility to overload the application with complex and long queries and obtain 
a denial of service. Moreover, using an “open” query endpoint means that it is much more 
difficult to do usage statistics and understand what the users are asking. 

Another approach to fill the gap between graph repositories and Web APIs is to wrap 
SPARQL queries and expose them as Web APIs. Template engines are used to let 
developers express a query with parameters. Such parameters are then exposed as the 
Web API operation parameters. Users call the API with the usual means, and they are not 
even aware that the operation is implemented by means of a SPARQL query. Such 
approach allows the application developer to clearly control how data is accessed, because 
the users are forced to use such Web APIs, and the query endpoint is not exposed. 

Inspired by this, [83] presents grlc, a lightweight server that translates SPARQL queries 
curated in GitHub repositories to Linked Data APIs on the fly. The same approach, heavily 
influenced by grlc, has been implemented with the concept of “Exploration API” in the IT2Rail 
Asset Manager. Instead of using GitHub as a repository for template SPARQL queries, the 
IT2Rail Asset Manager allows publishing such APIs as assets inside the application. 
Whenever an Exploration API is published in the system, the API is exposed so that users 
can query the RDF repository managed by the Asset Manager. 

 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 43 of 50 17/05/2019 
 

Contract No. H2020 –826172 

4. DISCUSSION 

This deliverable analysed the state of the art regarding several topics of interest for the 
SPRINT project from the point of view of semantic technologies, in particular for what 
concerns the integration of processes. In particular, it focused on the following issues: 

1. The results of past S2R projects regarding the creation and management of sematic 
technologies for the IF. 

2. The creation and maintenance of ontologies, possibly through learning mechanisms. 

3. The mapping of data from one format to another. 

4. The discovery of services. 

The first issue was analysed in Section 2. The analysis showed that the Asset Manager 
developed in the IT2Rail project conceptually provided three very important concepts, 
namely the ability to configure multiple asset types, the possibility to define asset lifecycles 
and the role of the Asset Manager itself as the official publishing tool for data residing in the 
Semantic Graph. Such features can now be further inspected and extended, e.g. by 
investigating the usage of much more powerful process languages to define asset lifecycles. 
The role of the Asset Manager as the catalogue of all the assets pertaining to an IF node 
paves also the way for a wider usage of this tool to improve the automation features of the 
IF. 

The GOF4R project highlighted a number of governance problems that directly impact 
assets handled by the IF, in particular ontologies. Indeed, the ST4RT project proposed a 
number of modifications to the ontology developed in the IT2Rail project, but there is still not 
a process in place to harmonize and merge the different versions of the ontology. Also, an 
analysis of the annotation process, first introduced in the IT2Rail project and then extended 
in the ST4RT project to map data from one format to another, showed that the process is 
still rather labor-intensive, and automated mechanisms should be developed to ease the 
burden on domain experts. 

Then, Sections 3.1, 3.2 and 3.3 surveyed a number of techniques that could help address 
the issues of ontology development highlighted above. 

As discussed in Section 3.1, there are two aspects that need to be considered for the 
ontology development activities to be carried out in the context of the SPRINT project. On 
the one hand, an appropriate ontology engineering methodology needs to be selected. In 
our case, we have decided to make use of one of the most complete ontology engineering 
methodologies available in the state of the art, which is especially focused on the 
development of networks of ontologies in a collaborative setting, such as the ones that are 
expected to be built in SPRINT. As we have discussed, much of the ontology development 
to be done will be based on the reuse of non-ontological resources, hence we will focus on 
making use of scenario number 2 from the methodology. On the other hand, a set of tools 
that can provide support to the methodology that has been selected needs to be considered. 
In our case, we have decided to select a state-of-the-art ontology development tool, such 
as Protégé, widely used in the state of the art for OWL ontology development, and the OWL 
files that will be developed will be maintained using a state-of-the-art source code 
management platform (GitHub), which will be connected with Ontoology, so as to provide 
support to the full ontology development lifecycle.  



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 44 of 50 17/05/2019 
 

Contract No. H2020 –826172 

One of the goals of the SPRINT project is to improve on the techniques developed in the 
ST4RT project by automating the process with which the concepts in legacy data formats 
are mapped to the reference ontology. Mechanisms for automatically learning ontologies 
from instances of data could help in this regard, so Section 3.2 provided a general overview 
of the automatic ontology learning process. It weighed the role of pre-processing techniques 
before applying any ontology learning algorithm to achieve satisfactory results for both 
structured and unstructured case studies. Also, it highlighted the importance of evaluation 
methods and their state-of-the-art techniques according to the purpose of the learning. 
Moreover, it presented the stages involved in the process of ontology learning including 
term, relation and finally axiom extraction, and it explained some of the current tools and 
methodologies for each stage. Then, it categorised the main existing evaluation 
methodologies and discussed their usage, advantages and drawbacks. To bridge the gap 
between ontology engineering and domain experts who do not have the required 
engineering skills, a platform with conceptual aspects is discussed; finally, the section 
introduced an instance-based learning method specific for structured text.  
Since the data that needs to be mapped to the reference ontology is most likely captured 
through a structured format, for the research purposes of the SPRINT project this latter, 
instance-based, learning method, and tools such as OntoLearn, which are more suitable for 
learning from structured text, seem the best candidates to be the basis (or the inspiration) 
for future developments in the project. 

Section 3.3 pointed out a few techniques for building OWL ontologies from existing UML 
models. These techniques could be useful if the formats to be targeted, for example in a 
conversion, had a UML description in terms of Class Diagrams. However, currently it does 
not seem that a similar scenario is relevant within the SPRINT project. 

Section 3.4 analyzed techniques that could be used to improve the data mapping techniques 
that are at the core of the converter technology developed in the ST4RT project. As Section 
3.4 described, there is a plethora of solutions concerning mapping different data formats to 
ontologies, thus performing lifting. On the opposite side of the transformation pipeline, the 
problem of extracting data from an RDF source to populate data schemas in different 
formats (lowering) has received less attention by researchers. Among the different 
techniques to implement lifting, both the ST4RT solution and the RML language can be 
considered good candidates to be included in the SPRINT converter. The former offers a 
set of Java annotations that cannot be found in any other RDF toolkit. Such annotations 
allow obtaining complex mappings which are absolutely required when dealing with real-
word complex transportation standards (as described in Section 2.2). RML is also a good 
candidate because it does not require developers to modify existing source code. This could 
be a benefit, since full access to source code is not always granted, and also because the 
requirement of having a Java class representation of the whole standard to be mapped could 
slow down the adoption of the solution. 

Regarding lowering RDF data to legacy data formats, apart from the initial experiments in 
understanding the possibility to “reverse” an RML lifting mapping, the best candidate to be 
included in the SPRINT converter is again the ST4RT technology. Lowering is a complex 
task, possibly much more complex than lifting. From a “topological” point of view, during 
lifting, a set of tables (in case of database mappings) or an information tree (in case of an 
XML mapping) are mapped onto a graph structure, which is a very generic data structure. 
When performing lowering, instead, a very generic data structure must be mapped in a 
stricter data structure. This leads to the necessity of a very specific mapping which would 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 45 of 50 17/05/2019 
 

Contract No. H2020 –826172 

take care of both the information mapping and the structural mapping. A language offering 
such features does not yet exist, therefore the annotation-based approach exploited in 
ST4RT can be considered the only existing approach alternative to manually-coded data 
conversion. Such approach can therefore be used in SPRINT and tested with the new 
converter architecture which will tackle scalability. 

Semantic asset discovery techniques like grlc and GraphQL, described in Section 3.5, deal 
with mixing APIs and query capabilities. GraphQL can be used to expose a query endpoint 
so that users can freely choose which data to obtain, whereas grlc allows using common 
HTTP technologies to allow users to access a pre-selected set of queries. The possibility to 
wrap a query to the semantic graph and expose it as a Web API could lead to the streamline 
of some coding activities which are currently required to implement Resolvers in the IF. 

 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 46 of 50 17/05/2019 
 

Contract No. H2020 –826172 

5. REFERENCES 

 

[1]  IT2Rail Consortium, “www.it2rail.eu,” [Online].  

[2]  ST4RT Consortium, “www.st4rt.eu,” [Online].  

[3]  GOF4R Consortium, “www.gof4r.eu,” [Online].  

[4]  ISO/IEC, 10746-3:2009 Information technology -- Open distributed processing -- Reference 

model: Architecture, 2019.  

[5]  M. Fernández-López, A. Gómez-Pérez and N. Juristo, “METHONTOLOGY: From 

ontological art towards ontological engineering,” in Proceedings of the Spring Symposium 

Series on Ontological Engineering (AAAI’97), 1997.  

[6]  S. Staab, R. Studer, H.-P. Schnurr and Y. Sure, “Knowledge processes and ontologies,” IEEE 

Intelligent Systems, vol. 16, no. 1, pp. 26 - 34, Jan-Feb 2001.  

[7]  H. Pinto, S. Staab and C. Tempich, “DILIGENT: Towards a fine-grained methodology for 

Distributed, Loosely-controlled and evolvInG,” in 16th European Conference on Artificial 

Intelligence (ECAI 2004), 2004.  

[8]  A. Gómez-Pérez, M. Fernández-López and O. Corcho, “The NeOn Methodology for 

Ontology Engineering,” in Ontology engineering in a networked world., Berlin, Heidelberg, 

2012.  

[9]  M. Suárez-Figueroa, A. Gómez-Pérez, E. Motta and A. Gangemi, “Introduction: Ontology 

Engineering in a Networked World,” in Ontology Engineering in a Networked World, 2012.  

[10]  M. Suárez-Figueroa, A. Gómez-Pérez and M. Fernández-López, “The NeOn Methodology 

framework: A scenario-based methodology for ontology development,” in Applied ontology, 

2015.  

[11]  V. Presutti, E. Blomqvist, E. Daga and A. Gangemi, “Pattern-Based Ontology Design. In,” 

Ontology Engineering in a Networked World., pp. 35-64, 2012.  

[12]  L. Halilaj, N. Petersen, I. Grangel-Gonzalez, C. Lange, S. Auer, G. Coskun and S. Lohmann, 

“Vocol: An integrated environment to support version-controlled vocabulary development,” 

in In European Knowledge Acquisition Workshop, 2016.  

[13]  C. Ghidini, B. Kump, S. Lindstaedt, N. Mahbub, V. Pammer, M. Rospocher and L. Serafini, 

“Moki: The enterprise modelling wiki,” in European Semantic Web Conference, 2009.  

[14]  A. Alobaid, D. Garijo, M. Poveda-Villalon, I. Santana-Perez, A. Fernández-Izquierdo and O. 

Corcho, “Automating ontology engineering support activities with OnToology,” Journal of 

Web Semantics, 9 Oct 2018.  

[15]  T. Tudorache, J. Vendetti and N. Noy, “Web-Protege: A Lightweight OWL Ontology Editor 

for the Web,” OWLED, vol. 432, p. 2009, Oct 2008.  

[16]  C. Basca, S. Corlosquet, R. Cyganiak, R. Fernández and T. Schandl, “Neologism – Easy 

Vocabulary Publishing,” in 4th Workshop on Scripting for the Semantic Web, 2008.  

[17]  A. Stellato, S. Rajbhandari, A. Turbati, M. Fiorelli, C. Caracciolo, T. Lorenzetti, J. Keizer and 

M. T. Pazienza, “Vocbench: A web application for collaborative development of multilingual 

thesauri,” in European Semantic Web Conference, 2015.  

[18]  P. Buitelaar, P. Cimiano and B. Magnini, “Ontology learning from text: methods, evaluation 

and applications,” p. 2005.  

[19]  M. N. Asim, M. Wasim, M. U. G. Khan, W. Mahmood and H. M. Abbasi, “A survey of 

ontology learning techniques and applications,” Database, p. bay101, 2018.  



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 47 of 50 17/05/2019 
 

Contract No. H2020 –826172 

[20]  E. Brill, “A simple rule-based part of speech tagger,” in Proceedings of the third conference 

on Applied natural language processing, Association for Computational Linguistics, 1992, 

pp. 152--155. 

[21]  E. Roche and Y. Schabes, “Deterministic part-of-speech tagging with finite-state transducers,” 

Computational linguistics 21, pp. 227-253, 1995.  

[22]  D. Sanchez and A. Moreno, “Creating ontologies from Web documents,” vol. 113, pp. 11-1.  

[23]  E. Charniak, “Statistical techniques for natural language parsing,” AI magazine, p. 33, 1997.  

[24]  D. Lin, “PRINCIPAR---An Efficient, broad-coverage, principle-based parser,” arXiv preprint 

cmp-lg/9407024, 1994.  

[25]  D. Lin, in 31st annual meeting of the association for computational linguistics, 1993.  

[26]  D. Klein and C. D. Manning, “Accurate unlexicalized parsing,” in Proceedings of the 41st 

Annual Meeting on Association for Computational Linguistics.  

[27]  T. Bergmanis and S. Goldwater, “Context sensitive neural lemmatization with lematus,” 2018, 

pp. 1391--1400. 

[28]  K. Oflazer and I. Kuruoz, “Tagging and morphological disambiguation of Turkish text,” in 

Proceedings of the fourth conference on Applied natural language processing, Association for 

Computational Linguistics, 1994, pp. 144--149. 

[29]  N. Ezeiza, I. Alegria, J. M. Arriola, R. Urizar and I. Aduriz, “Proceedings of the 17th 

international conference on Computational linguistics-Volume 1,” pp. 380--384, 1998.  

[30]  D. Z. Hakkani-Tur, K. Oflazer and G. Tur, “Statistical morphological disambiguation for 

agglutinative languages,” Computers and the Humanities, pp. 381--410, 2002.  

[31]  T. Erjavec and S. Dvzeroski, “Machine learning of morphosyntactic structure: Lemmatizing 

unknown Slovene words,” Applied Artificial Intelligence, pp. 17--41, 2004.  

[32]  G. Chrupal a, “Simple data-driven context-sensitive lemmatization,” Procesamiento del 

lenguaje natural, pp. 121-127, 2006.  

[33]  R. Sennrich, O. Firat, K. Cho, A. Birch, B. Haddow, J. Hitschler, M. Junczys-Dowmunt, S. 

Laubli, B. Antonio, V. Miceli and J. Mokry, “Nematus: a toolkit for neural machine 

translation,” arXiv preprint arXiv:1703.04357, 2017.  

[34]  J. Petit, J.-C. Boisson and F. Rousseaux, “Discovering cultural conceptual structures from 

texts for ontology generation,” in 2017 4th International Conference on Control, Decision 

and Information Technologies (CoDIT), 2017, pp. 0225--0229. 

[35]  A. Hippisley, D. Cheng and K. Ahmad, “The head-modifier principle and multilingual term 

extraction,” Natural Language Engineering, vol. 11, no. 2, pp. 129-157.  

[36]  D. Faure and C. Nedellec, “Knowledge acquisition of predicate argument structures from 

technical texts using machine learning: The system ASIUM,” in International Conference on 

Knowledge Engineering and Knowledge Management, 1999.  

[37]  A. P. Sheth, K. Gomadam and A. H. Ranabahu, “Semantics enhanced services: Meteor-s, 

SAWSDL and SA-REST,” Bulletin of the Technical Committee on Data Engineering, vol. 31, 

no. 3, p. 8, 2008.  

[38]  K. Frantzi, S. Ananiadou and H. Mima, “Automatic recognition of multi-word terms:. the c-

value/nc-value method,” vol. 3.  

[39]  P. Velardi, S. Faralli and R. Navigli, “Ontolearn reloaded: A graph-based algorithm for 

taxonomy induction,” Computational Linguistics, vol. 39, no. 3, pp. 665-707, 2013.  

[40]  R. Navigli and P. Velardi, “Semantic interpretation of terminological strings,” 2002.  



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 48 of 50 17/05/2019 
 

Contract No. H2020 –826172 

[41]  B. Frikh, A. S. Djaanfar and B. Ouhbi, “A Hybrid Method for Domain Ontology Construction 

from the Web.,” 2011.  

[42]  T. K. Landauer, P. W. Foltz and D. Laham, “An introduction to latent semantic analysis,” 

Discourse processes, vol. 25, pp. 259-284, 1998.  

[43]  L. Karoui, M.-A. Aufaure and N. Bennacer, “Contextual Concept Discovery Algorithm,” in 

FLAIRS Conference, 2007.  

[44]  M. Ciaramita, A. Gangemi, E. Ratsch, J. Saric and I. Rojas, “Unsupervised learning of 

semantic relations between concepts of a molecular biology ontology.,” in IJCAI' 05 

Proceedings of the 19th international joint conference on Artificial intelligence, Edinburgh, 

Scotland, 2005.  

[45]  R. Snow, D. Jurafsky and A. Y. Ng, “Learning syntactic patterns for automatic hypernym 

discovery,” in Advances in neural information processing systems, 2005.  

[46]  E. Drymonas, K. Zervanou and E. G. Petrakis, “Unsupervised ontology acquisition from plain 

texts: the OntoGain system,” in International Conference on Application of Natural Language 

to Information Systems, 2010.  

[47]  E. Daga, M. d'Aquin, A. Gangemi and E. Motta, “Bottom-up ontology construction with 

Contento,” in CEUR Workshop Proceedings, 2015.  

[48]  M. L. Zepeda-Mendoza and O. Resendis-Antonio, “Hierarchical agglomerative clustering,” 

Encyclopedia of Systems Biology, pp. 886-887, 2013.  

[49]  R. Ragunath and N. Sivaranjani, “Ontology based text document summarization system using 

concept terms,” ARPN Journal of Engineering and Applied Sciences, vol. 10, no. 6, pp. 2638-

2642, April 2015.  

[50]  C. M. Keet, M. T. Khan and C. Ghidini, “Ontology authoring with FORZA,” in Proceedings 

of the 22nd ACM international conference on Information & Knowledge Management, 2013.  

[51]  I. Bratko and S. Muggleton, “Applications of inductive logic programming,” Communications 

of the ACM, vol. 38, no. 11, pp. 65-70, 1995.  

[52]  R. Denaux, C. Dolbear, G. Hart, V. Dimitrova and A. G. Cohn, “Supporting domain experts to 

construct conceptual ontologies: A holistic approach,” Web Semantics: Science, Services and 

Agents on the World Wide Web, vol. 9, no. 2, pp. 113-127, 2011.  

[53]  Y. Zhai and B. Liu, “Extracting web data using instance-based learning,” in International 

Conference on Web Information Systems Engineering, 2005.  

[54]  D. Gašević, D. Djurić and V. Devedžić, “MDA-based Automatic OWL Ontology 

Development,” International Journal for Software Tools for Technology Transfer, vol. 9, pp. 

103-117, 2007.  

[55]  I. Kim and K. Lee, “A Model-Driven Approach for Describing Semantic Web Services: From 

UML to OWL-S,” IEEE Transactions on Systems, Man, and Cybernetics, Part C 

(Applications and Reviews), vol. 39, no. 6, pp. 637-646, 2009.  

[56]  Z. Xu, Y. Ni, W. He, L. Lin and Q. Yan, “Automatic extraction of OWL ontologies from 

UML class diagrams: a semantics-preserving approach,” World Wide Web, vol. 15, p. 517–

545, 2012.  

[57]  J. Zedlitz, J. Jorke and N. Luttenbe, “From UML to OWL 2,” in Knowledge Technology 

(KTW 2011), 2012.  

[58]  G. Klyne, J. Carroll and B. McBride, “RDF 1.1 Concepts and Abstract Syntax. W3C 

Recommendation,” February 2014. [Online]. Available: https://www.w3.org/TR/rdf11-

concepts/. 



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 49 of 50 17/05/2019 
 

Contract No. H2020 –826172 

[59]  S. Auer, L. Feigenbaum, D. Miranker, A. Fogarolli and J. Sequeda, “Use Cases and 

Requirements for Mapping Relational Databases to RDF. W3C Working Draft,” June 2010. 

[Online]. Available: https://www.w3.org/TR/rdb2rdf-ucr/. 

[60]  S. Das, S. Sundara and R. Cygania, “R2RML: RDB to RDF Mapping Language. W3C 

Recommendation,” September 2012. [Online]. Available: https://www.w3.org/TR/r2rml/. 

[61]  A. Dimou, M. V. Sande, P. Colpaert, E. Mannens and R. V. d. Walle, “Extending R2RML to 

a Source-independent Mapping Language for RDF,” in International Semantic Web 

Conference (Posters & Demos), 2013.  

[62]  B. Motik, P. Patel-Schneider and B. Parsia, “OWL 2 Web Ontology Language Structural 

Specification and Functional-Style Syntax (Second Edition) W3C Recommendation,” 

December 2012. [Online]. Available: https://www.w3.org/TR/owl2-syntax/. 

[63]  A. Poggi, D. Lembo, D. Calvanese, G. D. Giacomo, M. Lenzerini and R. Rosati, “Linking 

data to ontologies,” Journal on data semantics X, pp. 133-173, 2008.  

[64]  A. Carenini, U. Dell'Arciprete, G. Stefanos, K. P. M.M., M. Rossi and S. Riccardo, “ST4RT–

Semantic Transformations for Rail Transportation,” in Transport Research Arena TRA, 2018.  

[65]  J. Farrell and H. Lausen, “Semantic Annotations for WSDL and XML Schema W3C 

Recommendation,” August 2007. [Online]. Available: https://www.w3.org/TR/sawsdl/. 

[66]  C. Allocca and A. Gougousis, “A Preliminary Investigation of Reversing RML: From an RDF 

dataset to its Column-Based data source,” Biodiversity data journal, vol. 3, 2015.  

[67]  S. Harris and A. Seaborne, “SPARQL 1.1 Query Language W3C Recommendation,” 21 

March 2013. [Online]. Available: https://www.w3.org/TR/2013/REC-sparql11-query-

20130321/. 

[68]  M. Arenas, A. Bertails, E. Prud'hommeaux and J. Sequeda, “A Direct Mapping of Relational 

Data to RDF W3C Recommendation,” 27 September 2012. [Online]. Available: 

https://www.w3.org/TR/2012/REC-rdb-direct-mapping-20120927/. 

[69]  D. Beckett, T. Berners-Lee, E. Prud'hommeaux and G. Carothers, “Turtle Terse RDF Triple 

Language W3C Working Draft,” 10 July 2012. [Online]. Available: 

https://www.w3.org/TR/2012/WD-turtle-20120710/. 

[70]  F. Maali, J. Erickson and P. Archer, “Data catalog vocabulary (DCAT),” W3c 

recommendation, vol. 16, 2014.  

[71]  M. Dekkers, “Asset description metadata schema (adms),” W3C Working Group, 2013.  

[72]  D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith, S. Narayanan, M. 

Paolucci, B. Parsia, T. Payne and others, “OWL-S: Semantic markup for web services,” W3C 

member submission, vol. 22, 2004.  

[73]  H. Lausen, A. Polleres, D. Roman and others, “Web service modeling ontology (WSMO),” 

W3C member submission, vol. 3, 2005.  

[74]  H. Lausen, J. Bruijn, A. Polleres and D. Fensel, “WSML-a Language Framework for 

Semantic Web Services.,” in Rule Languages for Interoperability, 2005.  

[75]  M. Kifer, “Rule interchange format: The framework,” in International Conference on Web 

Reasoning and Rule Systems, 2008.  

[76]  J. Kopeckỳ, K. Gomadam and T. Vitvar, “hrests: An html microformat for describing restful 

web services,” in 2008 IEEE/WIC/ACM International Conference on Web Intelligence and 

Intelligent Agent Technology, 2008.  

[77]  J. Kopecky, T. Vitvar, D. Fensel and K. Gomadam, “hRESTS & MicroWSMO,” CMS WG 

Working Draft, p. 45, 2009.  



 

 

   

 

 

SPRINT-WP4-D-PDM-001-02 Page 50 of 50 17/05/2019 
 

Contract No. H2020 –826172 

[78]  J. Kopeckỳ, T. Vitvar, C. Bournez and J. Farrell, “Sawsdl: Semantic annotations for wsdl and 

xml schema,” IEEE Internet Computing, vol. 11, pp. 60-67, 2007.  

[79]  M. Lanthaler and C. Gütl, “Hydra: A Vocabulary for Hypermedia-Driven Web APIs.,” 

LDOW, vol. 996, 2013.  

[80]  N. Mainas, E. G. Petrakis and S. Sotiriadis, “Semantically enriched open API service 

descriptions in the cloud,” in 2017 8th IEEE International Conference on Software 

Engineering and Service Science (ICSESS), 2017.  

[81]  R. Hoekstra, A. Merono-Penuela, K. Dentler, A. Rijpma, R. Zijdeman and I. Zandhuis, “An 

ecosystem for linked humanities data,” in European Semantic Web Conference, 2016.  

[82]  G. K. (Spec-Ops), “An Extension to the Application Programming Interface for the JSON-LD 

Syntax,” 19 April 2019. [Online]. Available: https://w3c.github.io/json-ld-framing/. 

[83]  A. Meroño-Peñuela and R. Hoekstra, “grlc makes GitHub taste like linked data APIs,” in 

European Semantic Web Conference, 2016.  

[84]  T. R. Gruber, “Toward principles for the design of ontologies used for knowledge sharing?,” 

International journal of human-computer studies, pp. 907--928, 1995.  

[85]  J. Farrell and H. Lausen, “Semantic annotations for WSDL and XML schema,” W3C 

recommendation, vol. 28, 2007.  

[86]  T. Vitvar, J. Kopecky, J. Viskova and D. Fensel, “Wsmo-lite annotations for web services,” in 

European Semantic Web Conference, 2008.  

[87]  R. Taelman, M. Vander Sande and R. Verborgh, “GraphQL-LD: Linked Data Querying with 

GraphQL,” in ISWC2018, the 17th International Semantic Web Conference, 2018.  

[88]  D. Roman, J. Kopeckỳ, T. Vitvar, J. Domingue and D. Fensel, “WSMO-Lite and hRESTS: 

Lightweight semantic annotations for Web services and RESTful APIs,” Journal of Web 

Semantics, vol. 31, pp. 39-58, 2015.  

[89]  N. Mainas, E. Petrakis and S. Sotiriadis, “Semantically enriched open API service 

descriptions in the Cloud,” 2017.  

[90]  N. Mainas, E. G. M. Petrakis and S. Sotiriadis, “Semantically enriched open API service 

descriptions in the cloud,” in 2017 8th IEEE International Conference on Software 

Engineering and Service Science (ICSESS), 2017.  

[91]  I. S. A. and others, DCAT application profile for data portals in Europe, 2015.  

[92]  E. Prud, A. Seaborne and others, “Sparql query language for rdf,” 2006.  

 

 


