

SPRINT-WP3-D-UNI-003-04 Page 1 of 44 24/04/2020

Contract No. H2020 – 826172

SEMANTICS FOR PERFORMANT AND SCALABLE

INTEROPERABILITY OF MULTIMODAL TRANSPORT

D3.3 – Design of Architecture, Testing Infrastructure, Test

Cases and Benchmarks of the IF (C-REL)

Due date of deliverable: 31/10/2019

Actual submission date: 24/04/2020

Leader/Responsible of this Deliverable: UPM

Reviewed: Y

Document status

Revision Date Description

1 15/09/2019 Initial table of contents

2 30/09/2019 Revised table of contents

3 03/10/2019 Testing infrastructure material + revision of table of contents

4 10/10/2019 Reorganized content of the draft

5 24/10/2019 Revised reorganization of the document

6 05/11/2019 Final contributions received and document reorganised for final QA

7 20/11/2019 Final version after TMC approvaland Quality Check

8 17/04/2020 Final QA

9 24/04/2020 Final version after TMC approval and quality check

Project funded from the European Union’s Horizon 2020 research and innovation

programme

Dissemination Level

PU Public X

CO Confidential, restricted under conditions set out in Model Grant Agreement

CI Classified, information as referred to in Commission Decision 2001/844/EC

Start date of project: 01/12/2018 Duration: 25 months

SPRINT-WP3-D-UNI-003-04 Page 2 of 44 24/04/2020

Contract No. H2020 – 826172

EXECUTIVE SUMMARY

This deliverable describes the output of Tasks 3.3 and 3.4 of the SPRINT project, for what

concerns the C-REL milestone. In particular, the deliverable:

- Provides an overview of the Shift2Rail Interoperability Framework (S2R IF) and its

components, so as to provide a self-contained description in a single document as

well as to update the existing description of the S2R IF with the work done in these

tasks.

- Suggests a range of possible architectural alternatives to satisfy the requirements

identified in deliverable D3.2.

- Describes the designed logical and technical infrastructure to be used for the testing

of the performance and scalability of two of the components of the S2R IF, namely

the federated SPARQL query processor and the Converter.

Therefore, the main contributions presented in this deliverable are: (i) the proposal and

analysis of different architectural options that would make it possible to implement the S2R

IF (as discussed in section 3), with a special focus on the core components being addressed

in SPRINT: the asset manager, the converter and the federated SPARQL query processor;

and (ii) the design of a benchmark that allows testing the scalability and performance of the

federated SPARQL query processor and the Converter under a combination of materialised

and virtual RDF datasets, what is expected to appear in the context of the S2R IF (as

discussed in section 4).

It is important to note that this deliverable corresponds to the C-REL milestone, and

therefore does not provide final decisions on the architectural components nor a final set of

testbeds and benchmarks to assess all the S2R IF components that are addressed in

SPRINT. This will be included in the corresponding F-REL milestone deliverable.

SPRINT-WP3-D-UNI-003-04 Page 3 of 44 24/04/2020

Contract No. H2020 – 826172

ABBREVIATIONS AND ACRONYMS

Abbreviation Description

ADMS Asset Description Metadata Schema

AM Asset Manager

CQRS Command Query Responsibility Segregation

DCAT Data Catalog Vocabulary

DCAT-AP DCAT Application Profile

GTFS General Transit Feed Specification

IF Interoperability Framework

IT Information Technology

OBDA Ontology Based Data Access

OBDI Ontology Based Data Integration

RDF Resource Description Framework

RML RDF Mapping Language

R2RML RDB to RDF Mapping Language

xR2RML eXtended R2RML

S2R Shift2Rail

RDF Resource Description Framework

WSDL Web Services Description Language

SPRINT-WP3-D-UNI-003-04 Page 4 of 44 24/04/2020

Contract No. H2020 – 826172

TABLE OF CONTENTS

Executive Summary .. 2

Abbreviations and Acronyms .. 3

Table of Contents.. 4

List of Figures ... 5

List of Tables .. 6

1. Introduction ... 7

2. Our Starting Point: Overview of The Original Interoperability Framework Architecture 8

3. Design Alternatives for the SHIFT2RAIL Interoperability Framework .. 10

3.1 Analysis of Design Alternatives ... 10

3.1.1 Decomposition strategy ... 11

3.1.2 Data management ... 13

3.1.3 Communication .. 17

3.1.4 Deployment ... 20

3.1.5 User Interface .. 20

3.2 Preliminary Design .. 22

3.2.1 User Manager .. 23

3.2.2 Asset Manager .. 23

4. Design of the S2R IF Testing Infrastructure .. 30

4.1 Testbed For Scalability and Performance .. 32

4.1.1 Dataset .. 34

4.1.2 Queries .. 35

4.1.3 Mappings ... 36

4.2 Technical Infrastructure for Executing the Experiments ... 37

4.3 Testing Asset Manager Performance and Scalability... 39

4.4 Testing Distributed Sparql Endpoint Performance and Scalability 40

4.5 Testing Converter Performance and Scalability ... 41

5. References ... 43

SPRINT-WP3-D-UNI-003-04 Page 5 of 44 24/04/2020

Contract No. H2020 – 826172

LIST OF FIGURES

Figure 1. Internal Components of the Original Shift2Rail Interoperability Framework 8

Figure 2. General process followed by a Converter to transform input data into output data 14

Figure 3. Materialisation approach for the Converter conversion pipeline 15

Figure 4. An approach for the virtualisation of datasets in the Converter pipeline 16

Figure 5. An alternative approach for the application of virtualisation in the Converter pipeline 16

Figure 6. OBDA Architecture ... 17

Figure 7. Component Diagram of the S2R IF .. 22

Figure 8. User Roles ... 23

Figure 9. Asset Domain Model .. 24

Figure 10. Distributed SPARQL Endpoint Architecture .. 28

SPRINT-WP3-D-UNI-003-04 Page 6 of 44 24/04/2020

Contract No. H2020 – 826172

LIST OF TABLES

Table 1 Metrics for Performance and Scalability for RDF Data Storages 34

Table 2 Metrics for Performance and Scalability for Converter .. 34

SPRINT-WP3-D-UNI-003-04 Page 7 of 44 24/04/2020

Contract No. H2020 – 826172

1. INTRODUCTION

This deliverable provides two main contributions that are associated with the C-REL

milestone of the SPRINT project.

The first contribution is focused on the proposal and analysis of different architectural

options that would make it possible to implement the Shift2Rail Interoperability Framework

(S2R IF). First, a general set of descriptions for a preliminary design of the S2R IF is

provided. Taking that into account, as well the previous identification work that was done in

D3.2 “Performance and Scalability Requirements for the IF (C-REL)”, several recommended

patterns have been analysed in the view of how they may be applied for the S2R IF. The

pros and cons of each of these patterns in the context of the development of the S2R IF are

provided in Section 3, with a special focus on the core components being addressed in

SPRINT: the asset manager, the converter and the federated SPARQL query processor.

Next, in Section 4, we discuss about the design of a benchmark that allows testing the

scalability and performance of two of these components, the federated SPARQL query

processor and the Converter. This benchmark is inspired by previous works in the state of

the art in the area of performance and scalability testing of SPARQL endpoints, as well as

ontology-based data access solutions, given the focus on the use of converters in S2R IF,

which may use a combination of materialised and virtual RDF datasets. We describe the

datasets, queries and mappings that have been created as a testbed, based on the use of

original data from GTFS feeds from the transport authority of Madrid (so as to provide a

neutral while transport-related testbed) that are scaled up at different scales. We also

describe the technical environment to be used for the testing infrastructure.

SPRINT-WP3-D-UNI-003-04 Page 8 of 44 24/04/2020

Contract No. H2020 – 826172

2. OUR STARTING POINT: OVERVIEW OF THE ORIGINAL

INTEROPERABILITY FRAMEWORK ARCHITECTURE

Figure 1 provides an overview of the original architecture and internal components of the

Shift2Rail Interoperability Framework (S2R IF), which we use as a starting point for the work

presented in Section 3 in this deliverable. This architecture has been already presented in

previous deliverables of SPRINT.

As it happens with many other similar architectures, we present an architecture that is

divided into different layers (in this case, two). The Shared Data Layer includes a collection

of data from heterogeneous data sources of travel services in the transportation sector. In

this layer, a variety of data exists such as standards and specifications, transportation

ontologies, code lists, etc. The Service Layer conceives a unified and smooth collaboration

among various travel service providers as well as consumers of such services, including

S2R IP4 applications.

Figure 1. Internal Components of the Original Shift2Rail Interoperability Framework

Since the Data Layer accommodates a large heterogeneity of data in the context of the S2R

IF and one of the goals of IF is to overcome barriers to data exchange in the transportation

ecosystem, in our work we will focus on three of the IF components: Asset Manager,

Distributed SPARQL Endpoint and Converter. The Asset Manager allows publishing,

sharing, discovering and managing various artifacts that may be published/utilized by

external clients and other internal components of the IF. The Distributed SPARQL Endpoint

(aka federated SPARQL query processor) evaluates SPARQL queries over a set of

Sh
ar
e
d
	d
at
a

Triple	

Store

Ontologies

Service	

descriptions

Travel	Expert
Meta	data Other	data

Meta-data

Secure	access	to	data

Se
rv
ic
es

Rest	of	the	world

Auxiliary	
Services

Interoperability
ServicesAsset	Manager

Front	Store Back-Office

Asset	Discovery

Artefact	Registry

Life-Cycle	Management

Resolver

Converter

Location	Resolver

Travel-Expert	

Resolver

Trip-Tracker	

Resolver

Distributed	SPARQL

End	point

Event-Source	

Resolver

Service	Reg.

Ontology	Reg.

SPRINT-WP3-D-UNI-003-04 Page 9 of 44 24/04/2020

Contract No. H2020 – 826172

materialised or virtual SPARQL endpoints that may belong to different organizations,

providing a unified access to a complementary set of knowledge graphs. The Converter acts

as an adapter between two distinct formats and is able to map the information expressed in

one format to the other.

In Section 3, we will discuss on the different architectural alternatives that have been

identified to design such an interoperability framework and will conclude with a preliminary

design of the foreseen reference S2R Interoperability Framework, which will continue to be

refined during the execution of the SPRINT project.

SPRINT-WP3-D-UNI-003-04 Page 10 of 44 24/04/2020

Contract No. H2020 – 826172

3. DESIGN ALTERNATIVES FOR THE SHIFT2RAIL INTEROPERABILITY

FRAMEWORK

3.1 ANALYSIS OF DESIGN ALTERNATIVES

An initial draft of the software architecture for the S2R IF can be based on the components

identified in deliverable D3.1, describing the main macro features of the Service and Data

layers. Such features, defining the high-level functional requirements, should be further

designed according to a wide set of architectural patterns to guarantee the accomplishment

of the non-functional requirements described in D3.2.

Architectural principles and approaches determine the way features are assigned to

components, and the way each component exchanges information with the others, and

therefore choosing a specific approach can heavily affect both the implementation, the

quality of service and the possible future adoption of the solution.

In this section, we analyze how different architectural styles can affect the various

components and layers that had been identified in D3.1 and that were presented in Section

2. We then perform an initial choice that will drive the implementation efforts leading to C-

REL, according to the principles of choosing an effective architecture and encouraging

industrial adoption.

The analysis performed in D3.1 investigates architectural patterns for distributed systems,

comparing different deployment architectures and evaluating them on different dimensions

to point out the advantages and shortcomings of each solution. According to the evaluation

done, a modular service-oriented approach and, more specifically, a microservice

architecture seems the more promising approach. A microservice architecture is based on

a set of loosely-coupled and collaborating services, but designing the software architecture

in detail requires to address several issues and to take several design decisions.

Considering the pattern language proposed in [1], we proceed to analyze different

recommended patterns to solve typical issues in microservice architectures and to avoid

anti-patterns in defining the IF reference architecture. Furthermore, we discuss the pros and

cons of each pattern with respect to the IF functional and non-functional requirements. We

will focus on patterns dealing with:

• Decomposition strategy: this topic deals with how to decompose an application into

services and therefore on how and with what granularity features are assigned to

components.

• Data management: this topic deals with how data are kept consistent among

services and with how data are queried.

SPRINT-WP3-D-UNI-003-04 Page 11 of 44 24/04/2020

Contract No. H2020 – 826172

• Communication: this topic deals with how components exchange information with

other components and the users, and how different components can be orchestrated

to implement higher-level features.

• Deployment: this topic deals with how components are deployed on the physical

distributed infrastructure.

• UI: this topic deals with the choice on how to provide a unique interface served by

multiple services.

To support design choices in determining a reference architecture, we will describe the

patterns and we will explain the consequences of applying a specific pattern discussing

benefits, drawbacks and issues.

3.1.1 Decomposition strategy

Decomposition strategy is the first design decision in defining a microservice architecture

and deals with the fundamental task of identifying services and assigning them functional

requirements. A good decomposition strategy should guarantee a functional decomposition

assigning to each service a set of focused and cohesive responsibilities. The

accomplishment of this task is not trivial, but it is extremely important to facilitate

development, to reduce complexity and to guarantee independent horizontal scalability of

services.

Two different strategies are proposed as patterns to approach this issue: decomposition by

business capability and decomposition by subdomain. The former proposes clustering

functionalities according to the business logic and activities the application should perform,

the latter a clustering based on the specific subdomains identifiable in the domain

addressed.

Elaborating on this distinction with respect to the IF we obtain two feasible approaches:

• Cross-Asset Decomposition: in this scenario service decomposition is by business

capability and therefore each service offers a specific functionality identified for the

IF.

• Asset-Dedicated Decomposition: in this scenario service decomposition is by

subdomain and therefore each service is specialized on a single type of asset and

provides all functionalities related to the specific asset type.

To provide a concrete example considering the Lifecycle Management feature, adopting the

first approach a single service will provide this functionality for all type of assets, adopting

the second one the service related to a specific asset type is also responsible for all the

different management aspects related to its lifecycle.

SPRINT-WP3-D-UNI-003-04 Page 12 of 44 24/04/2020

Contract No. H2020 – 826172

A cross-asset approach should ensure configurability for different asset types without

introducing too much complexity or degradation of performances in relation to an increasing

number of assets. On the other hand, an asset-dedicated approach can optimize

functionalities development and performances on the specific asset, but it can cause

duplication of similar sub-services in the system. For these reasons, considerations to

choose a preferred approach are related to the relative expected growth in the number of

assets and functionalities in the IF, and to the overlapping logic required to offer similar

functionalities to different types of assets.

An additional aspect is related to the expected deployment configuration. To favour industrial

adoption, it may be useful to define a minimum installation template to lower the barriers in

entering the ecosystem. In this direction, the discussion should consider the minimum set of

services required for an IF installation and therefore if it is more reasonable to reduce a set

of asset-dedicated or cross-asset services.

Although a consistent choice of decomposition strategy is preferred, also a mixed approach

can be a feasible choice. Indeed, in an architecture based on a cross-asset decomposition,

it may be necessary to opt for an asset-dedicated decomposition of a specific functionality

requiring a strictly custom logic for each type of asset.

To conclude the discussion on decomposition strategies, an orthogonal aspect to the

patterns listed should be pointed out: the granularity of decomposition. To design a good

strategy, it is extremely important to determine at which level of detail we should split

functionalities into separated services. A relevant example considering the IF is related to

the Converter component, a low-granularity strategy can integrate the converters

functionalities in a single service implementing the conversion pipeline. However, a higher-

granularity strategy can split the converter into several services, each one implementing a

single step of the pipeline and allowing converter technology providers to independently

scale performance-critic functionalities.

The cross-aspect decomposition strategy seems to be the most applicable. Putting in place

an Asset-dedicated decomposition would require replicating several key components which

are usually capable of providing features for all the different assets alone. Replicating such

components for each single asset type would be a waste of resources, since that would

mean having each replica (each one consuming system resources) managing a very small

amount of assets. Applying a cross-asset decomposition on the opposite side will allow

reusing server components like process engines, RDF databases and object storage

servers, which will then be configured to provide “per-asset type” features. Such approach

will also likely improve adoption of the IF, as it will be easier to integrate it with the software

already adopted by Transport operators.

SPRINT-WP3-D-UNI-003-04 Page 13 of 44 24/04/2020

Contract No. H2020 – 826172

3.1.2 Data management

Data management patterns focus on three critical issues in distributed systems: Data

Storage, Data Consistency and Data Querying. Designing a microservice architecture most

services need to persist their data, but it is important to still guarantee loosely-coupled,

isolated and independently-scalable components.

The main design choices are related to the overall organization of the data layer, i.e.,

between the Shared Database pattern and the Database per Service pattern.

The simplest solution to cope with data management is the Shared Database pattern. In this

scenario, multiple services share an external database that ensures ACID transaction

enabling consistency and querying of up-to-date data. This pattern offers a straightforward

solution, but it introduces coupling between services that, depending on the application

requirements (e.g. in data-intensive applications), may become a too strict constraint

especially with respect to performance.

To strictly adhere to principles advocated by a microservice architecture a Database per

Service pattern should be implemented. Each service has its own database enabling

separated development and management of data structures and keeping required

coordination among services only based on interfaces. However, it is important to point out

that this requirement does not imply each service should have its own database server, it is

enough that each service manages its own data structures. In any case, this is what the S2R

IF is proposing with the use of a federated SPARQL query processor when it comes to

querying the data.

This second pattern avoids introducing coupling between services but, on the other hand,

presents different issues that require further design decisions among different patterns.

The first issue is related to Data Querying. Having a database for each service means

application data are split and the problem of querying data resembles typical issues of

querying distributed databases. To cope with this problem, we can employ two strategies:

• API Composition pattern: a set of APIs is defined to hide data fragmentation. The

service implementing those APIs knows which service contains data needed and

performs a set of queries and an in-memory join to compute the query result and

give-back a response to the caller.

• Command Query Responsibility Segregation (CQRS) pattern: a view of data

required for a specific type of queries is materialized and keep up-to-date processing

events emitted by different services owning the data.

The second issue is related to Data Consistency. Separated databases cannot guarantee

consistency of data as a unique local transaction. To solve this problem, we need to employ

a Saga pattern implementing a single transaction in a sequence of local transactions and

coordinating them. Two different coordination strategies can be used:

SPRINT-WP3-D-UNI-003-04 Page 14 of 44 24/04/2020

Contract No. H2020 – 826172

• Choreography: each service publishes an event as a result of its own local

transaction triggering the correct local transaction in other services. It is important to

notice that also error events and amendment actions should be handled.

• Orchestration: a specific object is responsible to coordinate the different services and

knows at each moment which local transaction should be performed. This is what is

normally done by a federated SPARQL query processor, for instance.

Choreography and CQRS are patterns based on the definition of events that should be

carefully designed. Often these types of patterns are combined with the Domain Event

pattern that prescribes the organization of business logic on a set of objects, based on

domain-specific concepts (Domain-Driven Design), that emit domain events when created

or published.

A further pattern inherently based on events to maintain data consistency is the Event

Sourcing pattern. The main idea of this pattern is to keep consistency relying on the atomic

concept of event. The state of an object is not directly stored and updated somewhere,

instead the sequence of events related to an object is stored allowing to reply events and to

reconstruct the current state avoid inconsistencies. Optimizations are often used, e.g.,

periodic snapshots of object state, but this approach requires a non-trivial programming

mindset to optimize complexity and performances.

Considering IF requirements, a shared database is a feasible scenario since data are mainly

accessed in reading mode and few concurrent writings are expected. This type of approach

can keep the architecture simpler and help programmers approaching an IF installation in

integrating existing infrastructure, e.g. an already in use database server, with the IF.

Patterns described for the Database per Service pattern can, however, offer suggestions to

implement a distributed network of IF installations requiring separated databases to

guarantee scalability.

Data Heterogeneity

Beyond general issues already mentioned, a specific aspect related to data management is

how the IF deals with Data Heterogeneity. The main component involved is the IF Converter,

which is the component that adapts and maps two distinct formats allowing interoperability

for different actors in the IF ecosystem.

Figure 2. General process followed by a Converter to transform input data into output data

SPRINT-WP3-D-UNI-003-04 Page 15 of 44 24/04/2020

Contract No. H2020 – 826172

In the ST4RT project1, the Converter (whose general process is depicted in Figure 2)

exploits an annotation-based approach to translate Java objects representing data

described in a source format into RDF graphs (lifting). Also, it is able to take an RDF graph

to build instances of Java classes representing data described in the target format

(lowering). Such approach is described in the literature as materialisation, since RDF triples

are actually generated by lifting and added to a temporary, in-memory RDF repository to be

queried and/or converted to a different format by mean of lowering procedures. Moreover,

this approach easily allows for the enrichment of the initial dataset with other triples uploaded

to the same RDF repository during the conversion, as depicted in Figure 3.

Figure 3. Materialisation approach for the Converter conversion pipeline

As discussed in D3.1, this high-level conversion pipeline can be implemented exploiting

different tools and architectural patterns to model the different stages. In particular, the

SPRINT project aims at extending the ST4RT Converter introducing a modular approach to

favor the customization with respect to the different scenarios and the composability of

conversion pipelines among different formats. This will be covered in Section 3.2.

However, the conversion problem is not simple and its requirements can be very different

from case to case. In particular, data can be too large for implementing materialisation, and

therefore another approach can be exploited using OBDA (Ontology Based Data Access) to

deal with data heterogeneity by leveraging virtualisation techniques. In this regard, two

different cases (depicted in Figure 4 and Figure 5) can be approached defining a Converter

leveraging virtualisation techniques based on OBDA tools.

1 http://www.st4rt.eu/

http://www.st4rt.eu/

SPRINT-WP3-D-UNI-003-04 Page 16 of 44 24/04/2020

Contract No. H2020 – 826172

Figure 4. An approach for the virtualisation of datasets in the Converter pipeline

Figure 5. An alternative approach for the application of virtualisation in the Converter
pipeline

The RML language can be considered as a good candidate to be included in the SPRINT

converter because it does not require developers to modify existing source code; RML [2] is

a mapping language defined to express rules that map data in heterogeneous structures to

the RDF data model. This could be a benefit, since full access to source code is not always

granted, and also because the requirement of having a Java class representation of the

whole standard to be mapped could slow down the adoption of the solution.

Figure 6 presents an architecture for mapping datasets between RDF and other formats

(XML, CSV, JSON and relational database). To adapt two formats, OBDA systems provide

a unified access in terms of an ontology. In this architecture, the SPARQL query is specified

over a virtual knowledge graph and then transformed into underlying query language of a

data source. During the query translation, some optimisation techniques can be performed

to generate a more efficient query. Finally, the result is translated to RDF when the

SPRINT-WP3-D-UNI-003-04 Page 17 of 44 24/04/2020

Contract No. H2020 – 826172

transformed query is evaluated on the data source. Such approach can be used to

implement the lifting phase of the conversion process in two different cases: when the input

of the conversion problem is a large dataset in a batch-like scenario, or when a message

conversion requires accessing large datasets.

Figure 6. OBDA Architecture

3.1.3 Communication

Modularization of software applications is an architectural principle widely spread even

before the definition of the microservice architecture pattern. The problem with classic

modularization is that often the barriers among components are lowered during

development, resulting in tightly bonded components. The success of the microservice

architecture pattern is also related to the inherent modularization of services that, since they

are developed and run separately, offer impermeable boundaries that are difficult to violate.

This aspect guarantees most of the benefits of a microservice architecture, but it opens

several design issues on the service discovery, on the communication between services,

and on the interface offered to communicate with users external to the system.

3.1.3.1 Service Discovery

Service Discovery is an issue related to how components become aware of the presence of

other services in the system. Moreover, service discovery should make service locations

transparent with respect to dynamically changing addresses and multiple-instance services.

The solution to this problem is identified in the Service Registry pattern (which will be

implemented by the Asset Manager, as described in section 3.2). A service registry is

implemented storing, for each service, the list of instances and the updated related

addresses. Each component needing a specific service shall consult the registry to obtain

the up-to-date location. To improve the reliability of the information stored, the service

registry may periodically health-check service instances to verify if they can handle requests.

SPRINT-WP3-D-UNI-003-04 Page 18 of 44 24/04/2020

Contract No. H2020 – 826172

This pattern can be associated with different strategies to determine how a client can

discover the location of a service and how to register and unregister services from the

registry.

Client discovery of services can be handled with the following patterns:

• Client-side Discovery pattern: the client itself exploits a registry-aware HTTP client

that queries the service registry to obtain the service location.

• Server-side Discovery pattern: the client makes a request through a load balancer

running at a known location and responsible to consult the service registry and

forward the request.

Service registration can be handled with the following patterns:

• Self-registration pattern: the service itself is responsible to self-register on startup, to

renew its registration periodically to confirm it is still alive and to unregister itself

before shutdown.

• 3rd party registration pattern: an external registrar is responsible to register and

unregister services on startup and shutdown respectively.

Considering the IF, the location of main services can be configured statically during

installation, since it is not supposed to change. However, if the deployment is made

exploiting an orchestrated container-based system, the load balancing between different

instances of a service and the DNS features are offered as basic functionalities ready to be

used. On the other hand, dynamically changing services like converters, resolvers and other

auxiliary services can exploit the asset manager as a sort of service-registry without health-

check controls. In both cases, registration is not demanded to the specific service.

3.1.3.2 Communication Style

Communication style identifies different patterns to implement communications between

services in a system. Three main methods can be implemented, and different services can

employ more than one method to communicate with other services.

The Remote Procedure Invocation pattern adopts a request/reply-based protocol to make

requests to services. This type of pattern comprises a wide set of possibilities: REST APIs,

Remote Procedure Call (RPC) protocols and binary serialization systems (e.g., Thrift2,

ProtoBuf3, Avro4).

2 https://thrift.apache.org/

3 https://github.com/protocolbuffers/protobuf/releases

4 https://avro.apache.org/

https://thrift.apache.org/
https://github.com/protocolbuffers/protobuf/releases
https://avro.apache.org/

SPRINT-WP3-D-UNI-003-04 Page 19 of 44 24/04/2020

Contract No. H2020 – 826172

The Messaging pattern exploits asynchronous communications over a messaging channel

(e.g., Apache Kafka5, RabbitMQ6). Different mechanisms can be implemented, the most

common are:

• Notification: the sender sends a message without expecting a reply.

• Request/Asynchronous response: sender sends a request and expects a reply

eventually.

• Publish/Subscribe: sender publishes a message related to a specific topic, zero or

more recipients subscribed to the same topic receive the message.

The Domain-specific protocol pattern exploits a custom-defined protocol for inter-service

communication.

In designing the communication mechanisms at each level in the architecture, a further

design choice should be made on where to implement the business logic. A feasible option

is to build a set of specific services offering specific functionalities to a client-service knowing

the logic, making right service calls and merging responses to produce the expected result.

Another option is to implement a set of higher-level services already implementing business

logic and offering a response to a light client.

Considering the IF architecture, it seems not needed to identify or define a domain-specific

protocol. Other communication means can be instead considered to implement different

types of communication between services.

3.1.3.3 External Communication

External communication patterns deal on how features offered by a system are exposed to

users hiding services fragmentation in the architecture.

The main pattern used for external communication is the API Gateway pattern that identifies

a single entry point for all external client requests. The gateway is responsible to forward

requests to the appropriate service adopting protocol translation if needed and merging

results from several sub-requests if a composed answer should be provided. A possible

variant of this pattern is called Backends for Frontends pattern and defines a different

gateway for each frontend, e.g., mobile app, web-based, etc.

The IF should employ this pattern to facilitate the development of different frontends

abstracting from the internal architecture.

5 https://kafka.apache.org/

6 https://www.rabbitmq.com/

https://kafka.apache.org/
https://www.rabbitmq.com/

SPRINT-WP3-D-UNI-003-04 Page 20 of 44 24/04/2020

Contract No. H2020 – 826172

3.1.4 Deployment

Once the set of services defining a microservice architecture are identified it is important to

design the deployment strategy.

The straightforward solution is to apply the Service Instance or Multiple Service Instances

per Host pattern deploying each service, possibly replicated, on a single host (physical or

virtualized, e.g., Virtual Machine). This approach is feasible and should be employed

whenever the architecture is composed of a small set of services requiring dedicated or a

predictable amount of resources.

The preferred solution for microservice architectures is however based on the Service

Instance for Container pattern. The usage of containers allows isolation of services as

previous patterns, but exploiting lightweight virtualization techniques allows optimizing

resource usage on each node packing multiple containers and guaranteeing easier

scalability of services. Moreover, the employment of the Service Deployment Platform

pattern, exploiting technologies like Kubernetes, allows for even easier management of

services and containers offering the possibility of defining the desired state and taking

actions to ensure it is guaranteed at any time.

Another option is the Serverless pattern that exploits managed services to hide any

infrastructural concept and to allow specifying only the portion of code to be executed once

a request is received. This approach is extremely scalable, but it poses several limitations

on the overall architecture and on the input/output manageable by requests.

Considering the IF, different deployment strategies may be devised. For sure a microservice

architecture better fits a container-based approach that should be considered as default

option also to help optimization of resources and to comply with identified performance and

scalability requirements. However, to increase adoption it may be useful to consider also

host-based deployments that can be a better option to help integration with legacy systems.

Moreover, a discussion on the best deployment pattern is also related to the scale of the IF,

e.g. TSP-level or National-level, and to the optional components deployed that can

determine different requirements (for example the definition of a runtime environment better

fits a Service Deployment Platform pattern). A serverless approach instead does not seem

to be an option due to the need of recurring to external providers and to their unpredictable

costs.

3.1.5 User Interface

The last set of patterns is related to the issues in composing a user interface hiding the

service fragmentation present in the architecture. Two possible options are:

• Server-side Page Fragment Composition pattern: each service is related to a

component that returns the corresponding portion of interface (e.g., HTML fragment),

then the different portions are aggregated server-side to fill in a specified UI template

for the interface offered to the user.

SPRINT-WP3-D-UNI-003-04 Page 21 of 44 24/04/2020

Contract No. H2020 – 826172

• Client-side UI Composition pattern: each service is related to a client-side

component that implements a portion of the interface. The different components are

tied by a UI template that contains the various elements and composes the interface

offered to the user.

The IF requirements do not impose any particular restriction on the choice of UI patterns.

SPRINT-WP3-D-UNI-003-04 Page 22 of 44 24/04/2020

Contract No. H2020 – 826172

3.2 PRELIMINARY DESIGN

In section we illustrate the preliminary design of the architecture of the S2R IF. The

architecture, details and consolidates the concepts presented in Section 2, and it concretizes

the principles laid down in Section 3.1, making suitable choices according to them.

Figure 7 illustrates the internal architecture of the S2R IF in more detail. As mentioned in

Section 2, the architecture is based on two layers, a Data Layer (handled by the Triple Store

subsystem shown in Error! Reference source not found.), and a Service Layer. In addition

to data stores, there are two main components, namely Asset Manager and User Manager,

which are designed to handle the various aspects of two entities of the system, Asset and

Users, respectively.

Figure 7. Component Diagram of the S2R IF

SPRINT-WP3-D-UNI-003-04 Page 23 of 44 24/04/2020

Contract No. H2020 – 826172

3.2.1 User Manager

As Figure 8 shows, another entity of the S2R IF is the User, which is handled by the User

Manager component. A human user of the S2R IF may be an individual or a representative

of a transportation operator. Apart from the Administrator Role, the possible interactions of

Users with the IF may be encapsulated in two different logical roles, namely IF Provider Role

and IF Consumer Role. IF providers are composed of a wide range of service/infrastructure

providers in the transportation domain, including transport authorities, transport service

providers, infrastructure managers, retailers and travel agency distributors [3]. Similarly, IF

consumers are also transportation actors such as travel service providers, social networks,

and IT suppliers and software applications.

Figure 8. User Roles

The main responsibility of the User Manager is to provide the means for a user to register

on the S2R IF and then govern the access rights and authorization for granting/denying

various permissions to get access and operate with Assets based on the user’s role and

following a role-based access control mechanism.

3.2.2 Asset Manager

The Asset Manager is a pivotal component of the S2R IF. It offers the basic functionality to

publish, share, discover, maintain and manage various artefacts that may be

published/utilized by external and internal components of the IF. It acts as a catalogue of

Assets which are subject to specific publication processes.

SPRINT-WP3-D-UNI-003-04 Page 24 of 44 24/04/2020

Contract No. H2020 – 826172

With respect to the principles described in Section 3.1, we can notice that the decomposition

strategy (see Section 3.1.1) of the Asset Manager follows the Cross-Asset Decomposition

pattern; indeed, as explained later in this section, each subcomponent of the Asset Manager

handles a separate concern (e.g., lifecycle management, registration) for all types of assets.

Different subcomponents, in turn, realize specific patterns, as it will be shown below. In

addition, the Asset Manager acts as a registry of assets, and allows clients to discover

services and use them. As a consequence, it realizes the Service Registry and the Client-

side Discovery patterns of Section 3.1.3.

Asset

In the scope of the IF, any resource that a generic actor of the transportation domain may

be interested in – to read, share and utilize it – has been referred to an Asset. More

specifically, as represented in

Figure 9, an asset is an artifact that has some descriptions, a definable lifecycle, and it is

discoverable by Users and other Assets.

Figure 9. Asset Domain Model

An Asset Description is a central element in IF since it determines the discovery domain. In

other words, only the aspects which have been stipulated in a description may be later

searched by any interested user. An asset description hence defines the characteristics of

an asset. However, the set of characteristics of an asset which is of interest of a particular

– logical or actual - user may differ with other. Accordingly, we have anticipated two types

of descriptions:

SPRINT-WP3-D-UNI-003-04 Page 25 of 44 24/04/2020

Contract No. H2020 – 826172

• Internal Asset Description

A description which defines generic characteristics of an Asset which are mainly
important for the internal usages by the Asset Manager itself, as well as for the end
user to find out human understandable details of that asset. For instance, the
publication date, the publisher, and the rate of the asset that shows its popularity.
Any asset in the IF must have one and only one Internal Asset Description, which

would be generated by the Asset Manager during the asset registration time. Some

of the information inside the description may be obtained by the publisher itself, and

others may be determined by AM.

• Technical Description
It provides further technical details about the asset, which may be necessary to

use/deploy/interact with the asset. For instance, the WSDL description of an asset

that has been packaged as a service is required by the user to understand the

interfaces of the service and how to bind with them. Differently from the “Internal

Asset Description”, it is not compulsory for an asset to have a technical description.

In addition, a machine-readable (RDF) description of the Asset, called metadata, may be

generated for any asset based on these asset descriptions, in order to facilitate semantic

based discovery of assets using distributed SPARQL endpoints. The AM stores the asset

metadata in RDF according to the DCAT-AP [4] and ADMS [5] vocabularies.

Furthermore,

Figure 9 depicts three categories of Assets (Data, Utilities and Components) along with their

subcategories. For each type of asset, we have also identified several actual instances as

their subcategory. The subcategories represented in the figure for each type of asset are

not exclusive in we might extend them in future deliverables.

Data Asset includes any types of data, and it is a materialization of the Data Abstraction.

Utilities and Components are the realization of the Service Abstraction. In other words,

Utility Assets (e.g., Ontology Editor, Mapping IDE) and Component Assets (e.g., Converter)

are tools and services to enhance interoperability.

It is important to highlight that such assets may be provided and utilized by external actors

as well as by the IF itself. In addition, as represented in

Figure 9, a Component Asset may be packaged as different deployable units. It enables

multiple deployment and engagement choices for IF’s clients and widens the usability of the

IF. Finally, the type of an Asset determines its lifecycle and the specification of its

description.

Finally, as depicted in

Figure 9, IF has anticipated various packaging and deployment strategies for engagement

with any type of assets. Indeed, with respect to the deployment patterns descried in Section

SPRINT-WP3-D-UNI-003-04 Page 26 of 44 24/04/2020

Contract No. H2020 – 826172

3.1.4, the proposed IF architecture supports various solutions, to achieve maximum

flexibility. Such decision has been made based on our requirement analysis reported in

previous deliverables with the goal of addressing the requirements for various application

domains and covering a wider range of use case scenarios. To this end,

consumers/provides of IF can choose between three options for utilizing/offering various

interoperability components as follows:

• Direct Access.
It is a standard approach for facilitating a loosely coupled and service-oriented

interoperability among transportation actors. A publisher can advertise an already

running component in IF by providing a generic description of IF which includes its

endpoint. The Asset Manager then creates MetaData out of its description so that it

may be discoverable through distributed SPARQL endpoints. In such cases, the IF is

mainly a service repository that bridges service descriptions into semantic web and

fosters a wider discovery range. After the discovery phase, the role of the IF is

terminated, and the customer would be redirected to the provider system where it has

engaged with the desired service. This solution is an instance of the Service Instance

or Multiple Service Instances per Host pattern of Section 3.1.4.

• Runtime executable environment.
It is as an extension of the previous model that promotes a Platform-as-a-Service

approach. It broadens the features of the Asset Manager to more than a catalogue

manager. The AM becomes a command and control tool that actively manages

deployable artifacts onto a cloud platform. To this end, either the service provider

itself or any other external infrastructure provider should authorize the IF to utilize

such a cloud environment upon user request. Accordingly, after the discovery phase,

AM takes the appropriate executable artefact of the selected component, runs it on

the expected cloud environment and returns the endpoint to access the service by

the client. This approach realizes the Service Deployment Platform pattern of Section

3.1.4.

• Direct Download.
Finally, to cover the use cases where clients prefer to run the desired component

locally or integrate it as an internal part of their system the IF supports the Direct

Download approach, where the publisher can upload the component implementation

and the IF lets users download it. More precisely, a component of the IF may be

wrapped up and published through different downloadable and runnable artefacts

including a container image, JAR and WAR. A component may be packaged in

multiple forms, what gives the client the possibility of choosing the most suitable

method to engage with the desired component. For example, if the client’s internal

system follows a micro-service architecture which is most often realized by utilizing

technologies such as Docker [6], then a docker image of a component (e.g.,

Converter) that could readily be deployed on a Kubernetes [7] cluster and integrated

with rest of the system seems the best option for the user. In other cases, if the client

SPRINT-WP3-D-UNI-003-04 Page 27 of 44 24/04/2020

Contract No. H2020 – 826172

prefers a conventional service-oriented approach, a component packaged as a WAR

file that may be integrated. This third solution is an example of the Service Instance

for Container pattern of Section 3.1.4, although the management of the container,

once it is downloaded, is left to the client.

The previous discussion highlights the choice made in the design of the IF to leave to each

published service the decision concerning the mechanisms to be used to interact with it. In

principle, different choices regarding the communication patterns (Remote Procedure

Invocation, Messaging, even Domain-specific protocol, see Section 3.1.3) could be made

by different services. The Asset manager itself, instead, favors a Remote Procedure

Invocation approach, as highlighted by its exposing a frontend (the UI component) to interact

with it.

AM subcomponents

AM is composed of two subcomponents, Store and Publisher. The former is the end user

interface, and the point of interaction of the end user with the IF (the IF design does not

mandate a specific approach to build the user interface, so any of the Server-side Page

Fragment Composition or the Client-side UI Composition can be used in its implementation).

Through that, user can view and search through available assets. The main back-end

service which enables such search functionality is the Exploration API.

• Exploration API

With the aim of easing access to a potentially high number of asset metadata

descriptions via common Web technologies, the Exploration API asset type (of

Component Category) has also been defined. This asset type is used to describe

parametric SPARQL queries, which are then exposed by the Asset Manager as Web

APIs with a mechanism akin to grlc [8] and basil [9]. Using a normal HTTP GET

request, the user can provide values to the parameters of the SPARQL query and

obtain the results. Publishing parametric queries as assets in the catalogue allows a

much higher level of control over the users’ behaviors, since users are only allowed

to call specific Web APIs according to their security permissions. The introduction of

the Exploration API is an instance of the API Gateway pattern described in Section

3.1.3.

On the other hand, the main role of the Assets Publisher is to provide required interfaces

to contribute an asset to the catalogue through the Asset Registration. Notice that the IF

architecture does not currently restrict who can or cannot register assets through the

Publisher component; as a consequence, this solution can support both the Self-registration

and the 3rd party registration patterns of Section 3.1.3. The other subcomponents include

lifecycle management and distributed SPARQL endpoint.

• Lifecycle Management

SPRINT-WP3-D-UNI-003-04 Page 28 of 44 24/04/2020

Contract No. H2020 – 826172

Assets to be used in a wide ecosystem need to be managed in a consistent way to

foster trust among the parties. To that extent, each asset type in the Assets Publisher

is linked to a lifecycle process, which covers all the aspects from the initial submission

to the final publication, plus all the aspects related to change management and the

effects of a change on dependent assets. Since such lifecycle processes (expressed

using the BPMN 2.0 standard) define roles and responsibilities in a distributed

environment, they become the real “contract” between the parties participating in the

ecosystem.

• Distributed SPARQL endpoint

A distributed SPARQL endpoint is a query engine capable of processing queries over

heterogeneous data. When a distributed SPARQL endpoint receives a SPARQL

query, it first identifies which data sources can be used to answer the query using

mapping information stored in the metadata repository. Previously, these data

sources have been described in terms of mappings to a common domain (ontology).

According to Figure 10, there is a mapping process that integrates several

heterogenous data sources (XML, CSV, JSON and relational databases) through a

virtual global RDF or virtual knowledge graph; the information about the mappings

between a virtual global RDF and its data sources are gathered in a metadata

repository. It is noteworthy that the architecture shown in Figure 10 is based on the

OBDI (Ontology Based Data Integration) concept, i.e., a three-level architecture

constituted by a virtual knowledge graph, multiple heterogenous data sources and

the mapping between them. In this architecture, the user formulates SPARQL queries

over the virtual knowledge graph, which is transformed into underlying query

languages of the data sources.

To transform a SPARQL query, several sub-queries are generated to be evaluated

over each data source and also a query plan is created with the order in which will be

executed these sub-queries. Then, the sub-queries are rewritten to other queries

considering potential inferences from the ontology and information in the mapping.

Afterward, each sub-query is translated to its correspondent source query engine

language to be finally executed by the underlying data sources. Lastly, results

obtained for each subquery are translated to RDF (or as SPARQL bindings) using

SPRINT-WP3-D-UNI-003-04 Page 29 of 44 24/04/2020

Contract No. H2020 – 826172

the rules provided in the mappings and are aggregated, including the removal of

duplicates and the linking of resources.

Figure 10. Distributed SPARQL Endpoint Architecture

The Distributed SPARQL Endpoint component highlights the decision made in the

design of the IF to support a Database per Service pattern (see Section 3.1.2).

Indeed, the component allows to retrieve data from different endpoints, without even

requiring the materialisation of the information. In addition, by delegating the handling

of queries to a suitable, separate component, the IF architecture can support different

data querying and data consistency patterns. Finally, within that IF, the Distributed

SPARQL Endpoint component is responsible, together with Converter assets, to

handle data heterogeneity issues.

SPRINT-WP3-D-UNI-003-04 Page 30 of 44 24/04/2020

Contract No. H2020 – 826172

4. DESIGN OF THE S2R IF TESTING INFRASTRUCTURE

The Interoperability Framework, as designed in D3.2, is a complex system whose

components belongs to two different categories. We can name those two categories as the

“Interoperability design support” and the “Interoperability execution”. The Asset Manager

belongs to the former category, as it will be used as a catalogue (or “yellow pages”) to

discover the available artifacts and data models when designing an interoperability solution

to join the Shift2Rail IP4 ecosystem. In Section 4.3 we discuss details about performance

and scalability for the test cases of the Asset Manager. Additionally, Converters and

Resolvers belong to the latter category, as they are the components which are called each

time a message must be converted and each time aggregated data must be accessed to

help achieve interoperability.

The C-Rel testing infrastructure will focus on the “Interoperability execution” category, since

the performance and scalability of Converters and Resolvers have the greatest impact on

achieving an effective interoperability. Converters and Resolvers differ in their purpose, but

they anyway share data access as the fundamental part which affects performance and

scalability.

Converters have a well-defined process, which have been initially explored by the ST4RT

project, where incoming data is “lifted” to RDF according to a specific set of ontologies, and

then “lowered” from RDF to the specific output specifications and format. Measuring

performance and scalability for this class of components means measuring how such

aspects are tackled by the conversion algorithm and by the underlying data access layer.

Resolvers are components designed and developed to fulfill task-specific purposes. They

generally provide lookup functionalities, and therefore they should access data previously

collected and merged in an RDF graph according to a specific set of ontologies (Shift2Rail

ontology and previously IT2Rail ontology). Performance and scalability for this class of IF

components are strictly tied to their specific purposes, so no general benchmark can be

designed. We can anyway focus on the impact of their data access phase, since

performance and scalability of a Resolver should largely depend on it.

As already discussed in the previous sections, one the main objectives of the S2R IF is to

provide a unified view and access to heterogeneous data sources used in the transportation

domain. However, these data sources are normally been published or exchanged in non-

RDF formats, such as CSV, JSON and XML. Some examples of typical messages that may

be exchanged in this context are the following:

• GTFS timetables

• NeTEx datasets containing timetables, routes and network descriptions

• TAP/TSI code lists

SPRINT-WP3-D-UNI-003-04 Page 31 of 44 24/04/2020

Contract No. H2020 – 826172

In this context, two different approaches can be used to semantically tackle data

heterogeneity considering a common ontology (from the S2R ontology network) for

accessing and exchanging data:

• Integrating all the source data in an RDF representation following the common

ontology and then querying it (materialized graph);

• Using query translation to access information directly in the original data sources

(virtualized graphs) and then providing results using the common ontology.

The proposed testing activities analyses the duality between the materialization and

virtualization approaches considering the two critical aspects for performances and

scalability of the IF and the related components, i.e., querying and converting

heterogeneous data.

Considering querying, performance and scalability of the materialized approach are strictly

tied to the ones of the RDF Triplestore used to store triples and run queries. Several studies

already tested different triplestore implementations, results are widely documented in the

literature [10] and many industrial actors already leverage this technology in their systems.

On the other hand, performance and scalability of querying a virtualized graph over

heterogeneous data sources should be investigated furthermore [11]. For this reason, in

Sections 4.1- 4.2, we will study the possibilities of generating a benchmark in order to

evaluate different approaches and tools exploiting a virtualization approach. This

assessment would be useful to determine which state-of-the-art tools perform better and

their readiness to be integrated into a production-ready solution. Moreover, tools considered

in these tests should deal with distributed input data sources, therefore, tests performed also

aims at testing tools to implement the distributed SPARQL endpoint functionality within the

IF. In our testing infrastructure we will consider this context of large heterogeneity, which is

expected in the context of the S2R IF, and we will develop a testbed that can be used to

evaluate the performance and scalability of this type of solutions that will be applicable in

the implementation of C-REL. This is what will be presented in Section 4.4.

Considering the conversion, materialization and virtualization are two different feasible

approaches of implementing the lifting portion of the conversion, i.e., to obtain the set of

triples input of the lowering procedure. In this context, performance and scalability

assessment should consider different alternatives for lifting and lowering, and the overall

conversion as implemented by the Converter. As a result, in Section 4.5 we discuss how to

leverage on the same testbed to describe different testing scenario for this component.

SPRINT-WP3-D-UNI-003-04 Page 32 of 44 24/04/2020

Contract No. H2020 – 826172

4.1 TESTBED FOR SCALABILITY AND PERFORMANCE

In the state of the art, several benchmarks have been proposed in the area of OBDA and

federation of SPARQL queries through different SPARQL endpoints [12] [13] [14] [15].

However, none of the existing benchmarks contemplates virtual knowledge graph access

with a unified global view and data sources in different formats while providing a real-world

setting, i.e., they are not OBDI benchmarks.

The testbed presented here was designed for virtual knowledge graph access. Thus, by

using a benchmark setup for multiple formats, the performance and scalability of OBDA and

OBDI engines can be compared, and the strengths and weaknesses of engines in both

OBDA and OBDI scenarios can also be evaluated.

In the design of our testbed we have decided to work with data sources that are not

particularly attached to the S2R domain, but share many of its characteristics, especially

with the objective that the testbed provides a neutral view over the whole transport domain

(so that other researchers can also make use of it more easily to take decisions on the

systems to use for a particular task) while providing useful insights for the core technology

components that may be part of the implementation of the aforementioned components of

the S2R IF.

Our testbed is published in a Github repository7 and should be adapted in the future to other

S2R domains. It measures two aspects:

(1) Performance. It is a set of quantitative criteria whose values are obtained by running

the testbed on the data from heterogeneous data sources of travel services in the

transport ecosystem. For performance, scores are assigned according to the results

of the execution time and then, a weighted average of the obtained score is also

computed.

(2) Scalability. It measures the trend of performance with increasing data volume.

Table 1-Table 2 show the criteria that can be used in general to measure the performance

and scalability of an RDF Data Storage and the converter. It is worth mentioning that some

of these criteria are only used to measure Performance and Scalability on OBDA solutions

or data integration platforms such as rewriting time of the query, query translation time and

Query translation time. Source/endpoints selection time only applies to the query federation

tools (OBDI). In accordance with the testbed objectives, weights can be assigned to each of

these criteria, with a score in a range, for example, a score from 1 (less relevant) to 3 (more

relevant), or a relative proportion of the weights between the different criteria, between 0

and 1, where the sum of the weights of all the criteria must be 1 in order to obtain a ranking

of the RDF Data Storage in terms of performance and Scalability.

7 https://github.com/oeg-upm/gtfs-bench

https://github.com/oeg-upm/gtfs-bench

SPRINT-WP3-D-UNI-003-04 Page 33 of 44 24/04/2020

Contract No. H2020 – 826172

Metric Description Unit

Load time Resource loading time during the starting phase when

ontology, mappings and query are loaded

Ms

Total execution

query time

Average execution time of queries Ms

Total execution time

per query type

Average execution time by type of queries Ms

Query rewriting time Average time in which the system rewrites the query, i.e. it

expands the original query to a set of queries, taking into

account potential inferences from the ontology and

information in the mapping

Ms

Query translation

time

Average translation time, taking the mapping into account,

from the original query to another query that is expressed

in the supported language by the underlying data sources.

Ms

Translation time of

results

Average translation time of results where the results of the

queries to the original data sources are translated into

results expressed in the language of the original query

(e.g., results in SPARQL)

Ms

Source/endpoints

selection time

Average time for selection of data sources required to

execute queries.

Ms

Query generation

time

when the set of subqueries to be evaluated over each data

source is created, and the query plan is generated

Ms

Mapping translation

time

Time required by the engine to translate a provided

mapping into another one in in a different language,

maintaining a set of properties between them

Ms

Query execution

time

Time when the translated queries are evaluated against

the underlying data sources and the results are translated

to RDF or as SPARQL bindings using the rules provided in

the mappings

Ms

Query aggregation

time

when the results obtained for each sub-query are

aggregated, including the removal of duplicates and the

linking of resources

Ms

Throughput Number of tasks executed per unit of time Queries/sec

SPRINT-WP3-D-UNI-003-04 Page 34 of 44 24/04/2020

Contract No. H2020 – 826172

Required data

space

Required space for data including indices and any other

secondary data access structure

MB

Successful queries Percentage of queries that ended successfully %

Correct queries Percentage of queries with a set of correct results w.r.t. a

Golden Truth, i.e., a reference standard

%

Complete queries Percentage of queries with a set of complete results w.r.t.

a Golden Truth

%

Table 1 Metrics for Performance and Scalability for RDF Data Storages

Metric Description Unit

Converter artifact generation
time

Time required to generate the Converter
downloadable artifact.

Ms

Response Time for
conversion

The time required to convert a data set or a
message.

Ms

Throughput for runtime
data/message converter

Number of conversion requests that can be
handled per unit of time

Requests/sec

Lifting time Time required to convert data from the input
format to their ontological representation.

Ms

Lowering time Time required to convert data from their
ontological representation to the output format.

Ms

Table 2 Metrics for Performance and Scalability for Converter

As in any other similar testbed, we will describe the datasets and mappings used in the

testbed and the queries used to analyse the system behaviour. Finally, in section 4.2 we will

propose the execution environment where the tests will be executed.

4.1.1 Dataset

Datasets can be generated with different sizes allow us to study the performance and

scalability for several IF components in the use of resources such as storage space and

execution time. Before generating datasets of different sizes, the original dataset must be

anonymized, i.e., the original dataset must be replaced with a version whose identifiers are

fictitious so that they cannot be to associate the concept that owns them.

The original dataset instance can be scaled using VIG [16] as a tool to generate datasets

with different scale values while taking account the domain information of ontologies and

mappings. VIG receives as input a dataset D together with its schema E, a set of mappings

M (together with the ontology) and the required scale S, and produces as a result a dataset

D' with a size S times its original size. The transformation from D' to RDF can be performed

SPRINT-WP3-D-UNI-003-04 Page 35 of 44 24/04/2020

Contract No. H2020 – 826172

using OBDA tools such as Morph-RDB8 or Ontop9. It is worth mentioning that VIG also has

options to anonymize the data.

In an OBDI/OBDA context, query engines translate their results into RDF. Thus, in order to

evaluate the correctness and completeness of the queries, the knowledge graph can be

materialised using a tool such as SDM-RDFizer10, which generates a materialized RDF

graph taking as input RML mapping rules.

To run our testbed, we have decided to use data about public transport in the city of Madrid.

More specifically, the web portal of Madrid Regional Transportation Consortium has

published information about public transport of Madrid in order to users and not-for-profit

enterprises can find and reuse these data. With this in mind, a benchmark for virtual

knowledge graph access in the transport domain following the General Transit Feed

Specification (GTFS) has been defined by us. The result of this work is also published at

[11].

The first step in a benchmark design is the generation of relevant datasets of different sizes.

For an IF Reference Dataset based on real data from the transport ecosystem, it must be

conveniently anonymized if necessary, as well as scaled to different sizes in order to stress

the IF components to be tested.

4.1.2 Queries

A set of queries must be specified to run our testbed. The queries will be expressed

according to:

a. Structure. It refers to structural characteristics related to the queries such as the

number of triple patterns, join shapes (star, chain or mixed) and number of

OPTIONAL clauses. A star-shaped join contains a group of triple patterns that are

“joined" over the same subject or object variable. In a chain-shaped join, triple

patterns are consecutively connected like a chain. Mixed queries combine star-

shaped and chain-shaped joins.

The structure properties of a query impacts on overall execution time and specifically

they also impact on query generation, query rewriting, query translation, and query

execution times. Moreover, query structure may affect query plans built during the

subquery generation phase. On one hand, in an OBDA context, the query plans are

generated by the underlying engine and therefore, performance and scalability will

be impacted by the query structure. On the other hand, in an OBDI context,

8 https://github.com/oeg-upm/morph-rdb

9 https://github.com/ontop/ontop

10 https://github.com/SDM-TIB/SDM-RDFizer

https://github.com/oeg-upm/morph-rdb
https://github.com/ontop/ontop
https://github.com/SDM-TIB/SDM-RDFizer

SPRINT-WP3-D-UNI-003-04 Page 36 of 44 24/04/2020

Contract No. H2020 – 826172

performance and scalability will be affected by the plan generated by the OBDI

engine.

b. Expressivity. It refers to the use of different options provided by the query language

such as arithmetic functions, aggregation, and filters. For instance, the use of

language features like DISTINCT and ORDER BY may impact on the query execution

time metric because they require an ordering of the tuples/entries of the underlying

sources.

c. Heterogeneity. Some queries must be executed against one data source and others

must be evaluated over a set of homogeneous sources (same data model) or

heterogeneous sources.

d. Selectivity. It is a percentage of the accessed triple patterns by a SPARQL query.

Constants in triple patterns together with FILTER with equality operators usually

produce high selectivity of queries and are likely to reduce the cost of evaluating the

query. However, using a FILTER relational operator specially in the case of open

ranges, e.g. a FILTER with a > operator, may generate a large number of results.

e. General Predicates. It corresponds to the use of language properties such as rdf:type

or owl:sameAs.

4.1.3 Mappings

Ontology-based data access (OBDA) refers to a variety of techniques, algorithms, and

systems that can be used to address the problem of heterogenous data integration that is

common within many organizations. In OBDA, ontologies are used to provide a global view

of multiple local datasets and mappings are commonly used to describe the relationships

between these global and local schemes. In this approach, queries written according to the

global scheme are transformed into the query language supported by the original data

sources, evaluated in the original data management systems, and the results are

transformed back into the global view.

Mappings play a fundamental role in the testbed since they are the main elements used

during the query translation. In the state of the art, many different types of OBDA mapping

languages have been proposed with a great variety of syntaxes and formats: RML [2],

R2RML [17], xR2RML [18], and Ontop [19] OBDA mappings.

The mappings represent the relation of one resource in the ontology with the corresponding

data source. The features of the mappings are very relevant because they may impact on

the performance of the virtual knowledge graph access engines. In general, each mapping

in a mapping file is characterized by the related data source, number of classes, number of

Predicate Object Maps, number of Predicates, number of Objects and number of joins (e.g.

RefObjectMaps).

SPRINT-WP3-D-UNI-003-04 Page 37 of 44 24/04/2020

Contract No. H2020 – 826172

4.2 TECHNICAL INFRASTRUCTURE FOR EXECUTING THE EXPERIMENTS

This section describes a potential execution environment that can be used to evaluate and

validate the performance and scalability of any new instance of the S2R IF. Based on the

datasets from the travel services provided by different transportation sectors, automatically-

created mappings and a set of queries, the behaviour of IF components can be

experimentally evaluated.

Since the Data Layer relies on the back-end databases and management of database

operations needed to handle collection, storage, and retrieval of data, it is necessary to

include RDF stores keeping RDF graphs such as ontologies, enriched meta-data (according

to the reference ontology) and meta-data generated by the Asset Manager describing

different assets.

Several state-of-art benchmarks have been developed in order to evaluate the efficiency of

different tools capable of executing SPARQL queries on RDF datasets, e.g., SP2Bench [20],

LUBM [21], BSBM [12], DBSPB [22], and NPD. They are usually composed of a set of

queries that meet various features (e.g. operators or number of joins), a scale data generator

and a set of measures such as total execution.

The steps to be followed for the execution of a Performance and Scalability Benchmark must

consider that some triple stores are queried by means of a materialized RDF graph

generated from data sources, while other triple stores are consulted over virtualized data

from data sources using OBDA. The setup steps are as follows:

1. Generation of datasets with different sizes. Different sizes of datasets allow to show

the scalability of any tool used for querying data with respect to the use of resources,

the storage space and loading and execution time. For example, datasets can be

generated with increments of 1 order of magnitude, 10, and 100 times larger.

2. Specification of mappings. A set of mappings between datasets and the reference

knowledge graph must be specified to transform heterogeneous data sources into a

common data model, which can then be accessed and processed in order to

complete the querying tasks.

3. Transformation and loading of data. In this step, the data resulting from the previous

step can be transformed to a supported format. This step is relevant only for triple

stores incapable of directly working with a given format, for example, NoSQL and

OBDA that don't implement query translation.

4. Query Generation. In this step, a set of queries are specified according to structure,

expressivity, heterogeneity, selectivity and general predicates.

5. Tool Deployment in controlled environments. Some variables related to the platform

can affect the measurements that must be controlled during the Benchmark

execution. These are:

SPRINT-WP3-D-UNI-003-04 Page 38 of 44 24/04/2020

Contract No. H2020 – 826172

a. Cache on/off. It can be relevant if a query is executed with Warm or Cold

Cache.

b. Available RAM memory.

c. Number of processors.

d. Network latency in terms of the delay that occurs to send packets through the

network.

e. Initial delay of the endpoint/node.

f. Message size.

g. Number of endpoints/nodes.

h. Type of endpoint/node.

i. Distribution for packet transmission time by endpoints/nodes.

j. Result size limit.

k. Timeout.

6. Selection of Metrics. Depending on the IF component, a set of metrics must be

selected to measure and analyze the behavior of such IF components. These metrics

are defined in Table 1-Table 2.

7. Query Execution. A set of SPARQL queries will be evaluated in warm and in cold

mode in order to analyze how the cache mechanism may affect the performance of

the tools. Each query is run a certain number of times. In warm mode, each query

will be evaluated discarding its first run and then it was run again a certain number of

times to compute the average query execution time. In cold mode, the database

server was restarted after each run to clean all the caches.

8. Result Analysis. The results of each tool are independently analyzed and discussed.

9. Data review. The configurations of the variables related to the dataset size are

reviewed, the benchmark is run again if it is necessary and the final results are

published.

All experiments will be performed using Docker containers to ensure reproducibility. For

each tool, a docker image will be created considering the recommended settings and the

datasets generated with different sizes will be loaded.

SPRINT-WP3-D-UNI-003-04 Page 39 of 44 24/04/2020

Contract No. H2020 – 826172

4.3 TESTING ASSET MANAGER PERFORMANCE AND SCALABILITY

The Asset Manager is a metadata catalogue which is able to enforce different complex

publication processes. It can be either used internally by a company or shared between

different companies willing to establish a common data and service ecosystem. Given its

purpose and its intended usage, we can analyze what the terms “performances” and

“scalability” mean in this context.

The main purpose of the Asset Manager is to act as a metadata catalogue. Each asset

therefore is described using metadata, and can optionally have “attachments” in case the

described asset cannot be publicly accessed. Metadata is saved as RDF in a repository,

while attachments are saved as files in a separate object storage.

The metadata schema which will be used by the Asset Manager is yet to be decided, anyway

the amount of triples required to archive metadata information about an asset is quite low.

Using DCAT-AP, metadata about a single asset can require about 20 RDF triples. One of

the basic principles of the Interoperability Framework is to avoid centralization, therefore the

Asset Manager is not intended to be deployed as a single instance to serve the users across

all Europe. A likely scenario is that multiple instances of the Asset Manager would be

deployed by different groups of competing Transport Operators, mimicking the situation in

the air transport dominated by different “alliances” between airline operators. In this likely

scenario, the assets managed by a single instance of the Asset Manager could be in the

thousands. Off-the-shelf RDF repositories can manage billions of triples11, therefore can be

used to store metadata about hundreds of millions of assets. Scalability requirements for the

RDF metadata layer of the Asset Manager can then be considered as satisfied without

further investigation.

The same principles apply when querying a single RDF repository using SPARQL. Even by

using DCAT-AP, the metadata schema does not allow for very complex SPARQL queries.

Moreover, since those queries will be quite similar, they will be likely cached by the RDF

repositories. As the SPARQL language is a standard for all RDF repositories, any KPI about

performance requirements related to queries over metadata will just be related to the specific

RDF repository which will be chosen for the implementation [10].

Performance is the most important aspect to be checked for the metadata layer. In this case,

testing a distributed scenario is relevant when we can consider that the metadata layer will

be implemented by a distributed SPARQL endpoint which federates many data sources.

This can be the case of a transport operator owning different RDF repositories, each one

containing metadata information. In this case, measuring query time with a growing number

of endpoints and a growing size of metadata information can prove the possibility for the

Asset Manager to be adopted in large and distributed companies. Since the part of the Asset

Manager implementing such feature is the same Distributed SPARQL endpoint whose tests

11 https://www.w3.org/wiki/LargeTripleStores

https://www.w3.org/wiki/LargeTripleStores

SPRINT-WP3-D-UNI-003-04 Page 40 of 44 24/04/2020

Contract No. H2020 – 826172

are defined in Section 4.4, we will refer to the tests defined for such component to evaluate

the performances and scalability of the Asset Manager data access layer when dealing with

distributed metadata.

Scalability means also the possibility to manage a growing number of users. Being the Asset

Manager a metadata catalogue, such users can grow in numbers, but anyway their number

will be limited and will not be comparable to the number of users of a social network. The

Asset Manager users are expected to be developers looking for suitable assets, and asset

publishers (therefore mostly transport operators and ITS providers). Most likely, the act of

discovering new assets and publishing asset descriptions will not be performed many times

per day by a single user. The C-Rel version of the Asset Manager will leverage

containerization and will enable deployment on a single machine. F-Rel version of the Asset

Manager will focus on its deployment on a cloud environment to leverage automatic

scalability. Therefore, we will focus on testing performance and scalability of the Asset

Manager when dealing with a large user base in F-Rel.

4.4 TESTING DISTRIBUTED SPARQL ENDPOINT PERFORMANCE AND

SCALABILITY

Since the function of the Distributed SPARQL endpoint is to answer distributed queries on

heterogeneous data sources, our test case is based on testing the Distributed SPARQL

endpoint with a variety of SPARQL queries of diverse complexity and on heterogeneous

data sources that store data in various formats (heterogeneity). In addition, although our

Distributed service/asset discovery scenario (Basic Scenario 2 in [3]) is about a federated

query on metadata catalogues, we have decided to build our test case on data instead of

metadata mainly because the volume of metadata is usually much smaller than the data and

we can draw more significant conclusions in front of a larger volume of data. For example,

we estimate 20 RDF triples for an asset stored in a metadata repository.

Particularly, following the steps proposed in section 4.2, we have tested federated queries

on the data of the Madrid metro system which have been scaled 5, 10, 50, 100 and 500

times its size to measure scalability (Step 1). With respect to heterogeneity, the formats of

the datasets will be the most commonly used in the data exchange: CSV, XML, RDB and

JSON. For the Distributed SPARQL endpoint to be able to answer a SPARQL federated

query, it requires a set of mappings that will be specified in RML [2], R2RML [17], xR2RML

[18], and Ontop OBDA mappings [19] (Step 2) and a set of SPARQL queries varying the

number of triple patterns, the number of data sources selected, the use of OPTIONAL clause

or aggregation functions, equality (equal to) or range (relational) conditions in the FILTER

clause, and the number of constants in a query (Step 4). Subsequently, those platform-

related variables that can affect the performance measurements are controlled (Step 5) and

the metrics from Table 1 are selected to measure performance and scalability of the

Distributed SPARQL endpoint (Step 6). Then, the set of SPARQL queries generated during

the Step 4 are executed for each CSV, XML, RDB and JSON format to measure query

performance and they are also executed for each dataset size on a scale of 10, 50, 100 and

SPRINT-WP3-D-UNI-003-04 Page 41 of 44 24/04/2020

Contract No. H2020 – 826172

500 to measure scalability of the Distributed SPARQL endpoint (Step 7). Finally, the results

are analysed in Step 8.

4.5 TESTING CONVERTER PERFORMANCE AND SCALABILITY

The conversion process implemented by the IF Converter is composed by two main phases:

(i) the lifting phase accesses the data in the input data format and generates the

corresponding RDF representation adopting the reference ontology, and (ii) the lowering

phase queries data represented using the reference ontology and generates converted data

in the output data format. Both lifting and lowering can be implemented using different

techniques and approaches. A first distinction in the possible techniques lies between

annotation-based and declarative approaches. The ST4RT project demonstrated the

feasibility of an annotation-based approach for converting messages, whereas declarative

approaches like RML have their roots in batch conversion of bigger datasets. Another

distinction is between materialization and virtualization. Lifting input data can be

implemented by saving the corresponding RDF triples in an RDF database and then queried

during lowering, therefore using a materialization approach. The virtualization approach

instead provides results to the queries used for lowering by translating them on the fly into

the corresponding and format-specific queries. Annotations, declarative languages,

materialization and virtualization are therefore possible ways to achieve the same results.

All of them provide advantages in some cases and are affected by weaknesses in other

cases. Designing a performance and scalability test for the Converter can therefore help in

understanding the limitations of each approach.

Since the ST4RT project already provided an evaluation of the annotation-based approach,

in C-Rel we will focus on exploring the other technological possibilities to build efficient

Converters: RML-based materialization and virtualization.

Materialization and virtualization have different advantages and disadvantages, different

tools implement these approaches and can be combined to obtain a working Converter. We

propose two test cases designed to test performance and scalability of the conversion

implementation considering the two main scenarios described in deliverable [3]. The

purpose of the designed test cases is to understand which typology of approach perform

better in the two scenarios, to identify limits of the tools chosen and to overcome potential

bottlenecks in the reference implementation developed within the project.

The steps described in section 4.2 can be adapted to test Performance and Scalability of

the Converter:

1. First, we must generate different sizes of datasets to show the scalability of the

specific tool used for conversion of data with respect to the metrics to be measured.

2. Second, a set of mappings between datasets and the reference knowledge graph

must be specified to accomplish the lifting stage during the converter pipeline. This

knowledge graph can be virtualized or materialised.

SPRINT-WP3-D-UNI-003-04 Page 42 of 44 24/04/2020

Contract No. H2020 – 826172

3. As queries are executed only during the lowering stage, we must create template

lowerers which include a query to extract RDF data from (virtual or materialised)

knowledge graph and template variables to bind RDF to their output.

4. In addition, a set of metrics must be selected to measure and analyze the behavior

of the Converter. These metrics are defined in Table 2.

5. Subsequently, the experimental evaluation of the behaviour of the converter will be

executed. For the conversion task, lifting and lowering stages must consider if the

RDF graph is materialised or virtualised. During the lifting stage, data are

transformed to an ontological representation which can be materialised or virtualised

for later being queried during the lowering stage in order to extract and transform

RDF data into the desired output format. Each complete conversion is run a

certain number of times to calculate the average conversion execution time.

6. Finally, the results are analyzed.

The proposed approach can be employed in the two considered scenarios. However, it is

important to notice that the two cases should evaluate different typologies of scalability in

the input datasets. The Batch Data Conversion scenario considers the case where a batch

dataset should be converted. Usually, this scenario does not have constraints on the

conversion time, but it requires scalability with respect to the size of the dataset that can be

in the order of hundreds of megabytes. The Runtime Data/Message Conversion (Service

Mediation) scenario considers the case where a message or a small amount of data (in the

order of bytes/kilobytes) should be converted to guarantee communication between two

different systems. Usually, this scenario involves small size datasets, but it requires

conversion time to be as short as possible to introduce low overhead in the communication.

In this case it is important to verify the scalability of the approach in the case of increasing

concurrent requests.

SPRINT-WP3-D-UNI-003-04 Page 43 of 44 24/04/2020

Contract No. H2020 – 826172

5. REFERENCES

[1] C. Richardson, Microservices Patterns, Manning Publications, 2018.

[2] A. Dimou, M. V. Sande, P. Colpaert, E. Mannens and R. V. d. Walle, "Extending R2RML to a Source-

independent Mapping Language for RDF," in International Semantic Web Conference (Posters &

Demos), 2013.

[3] SPRINT, "D3.2 - PERFORMANCE AND SCALABILITY REQUIREMENTS FOR THE IF," 2019. [Online].

Available: http://sprint-transport.eu/Page.aspx?CAT=DELIVERABLES&IdPage=1e2645be-e780-4d99-

8117-bae57b67b453.

[4] S. Goedertier, DCAT application profile for data portals in Europe, 2013.

[5] M. Dekkers, "Asset description metadata schema (adms)," W3C Working Group, 2013.

[6] "Docker," [Online]. Available: https://www.docker.com/). .

[7] "Kubernetes," [Online]. Available: https://kubernetes.io.

[8] A. Meroño-Peñuela and R. Hoekstra, "grlc makes GitHub taste like linked data APIs," in European

Semantic Web Conference, 2016.

[9] E. Daga, L. Panziera and C. Pedrinaci, "Basil: A cloud platform for sharing and reusing SPARQL queries

as Web APIs," in CEUR Workshop Proceedings, 2015.

[10] M. Saleem, G. Szárnyas, F. Conrads, S. A. C. Bukhari, Q. Mehmood and A. C. Ngonga Ngomo, "How

representative is a sparql benchmark? an analysis of rdf triplestore benchmarks," in The World Wide

Web Conference, San Francisco,USA, 2019.

[11] D. Chaves-Fraga, F. Priyatna, A. Cimmino, J. Toledo, E. Ruckhaus and O. Corcho, "GTFS-Madrid-Bench:

A Benchmark for Virtual Knowledge Graph Access in the Transport Domain".

[12] C. Bizer and A. Schultz, "The Berlin SPARQL benchmark," Int. J. Semantic Web Inf. Syst , vol. 5, pp. 1-

24, 2009.

[13] D. Lanti, M. Rezk, M. Slusnys, G. Xiao and D. Calvanese, "The NPD benchmark for OBDA systems," in

CEUR Workshop Proceedings, 2014.

[14] M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte and T. Tran, "FedBench: A Benchmark Suite

for Federated Semantic Data Query Processing," in International Semantic Web Conference, 2011.

[15] G. Montoya, M. Vidal, O. Corcho, E. Ruckhaus and C. Buil-Aranda, "Benchmarking federated SPARQL

query engines: Are existing testbeds enough?," in International Semantic Web Conference, 2012.

SPRINT-WP3-D-UNI-003-04 Page 44 of 44 24/04/2020

Contract No. H2020 – 826172

[16] D. Lanti, G. Xiao and D. Calvanese, "VIG: Data scaling for OBDA benchmarks," Semantic Web, vol. 10,

no. 2, pp. 413-433, 2019.

[17] S. Das, S. Sundara and R. Cygania, "R2RML: RDB to RDF Mapping Language. W3C Recommendation,"

September 2012. [Online]. Available: https://www.w3.org/TR/r2rml/.

[18] F. Michel, L. Djimenou, C. Faron-Zucker and J. Montagnat, "xR2RML: Relational and Non-Relational

Databases to RDF Mapping Language," 2014.

[19] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk, M. Rodriguez-Muro and G.

Xiao, "Ontop: Answering SPARQL queries over relational databases," Semantic Web, vol. 8, no. 3, pp.

471-487, 2017.

[20] M. Schmidt, T. Hornung, M. Meier, C. Pinkel and G. Lausen, "SP2Bench: A SPARQL Performance

Benchmark," in International Conference on Data Engineering, 2009.

[21] Y. Guo, Z. Pan and J. Heflin, "LUBM: A benchmark for OWL knowledge base systems," J. Web Semant,

vol. 3, pp. 158-182, 2005.

[22] M. Morsey, J. Lehmann, S. Auer and A. Ngomo, "DBpedia SPARQL Benchmark - Performance

Assessment with Real Queries on Real Data," in International Semantic Web Conference, 2011.

[23] "GTFS Static Overview," [Online]. Available: https://developers.google.com/transit/gtfs/.

[24] A. Poggi, D. Lembo, D. Calvanese, G. D. Giacomo, M. Lenzerini and R. Rosati, "Linking data to

ontologies," Journal on data semantics X, pp. 133-173, 2008.

[25] "General Transit Feed Specification," [Online]. Available:

https://www.transitwiki.org/TransitWiki/index.php?title=General_Transit_Feed_Specification.

[26] S. Harris and A. Seaborne, "SPARQL 1.1 Query Language W3C Recommendation," 21 March 2013.

[Online]. Available: https://www.w3.org/TR/2013/REC-sparql11-query-20130321/.

