Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596

journal homepage: www.elsevier.com/locate/websem

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents on the =
World Wide Web —

JouURMAL oF

WORLD WIDE WEB

GTFS-Madrid-Bench: A benchmark for virtual knowledge graph access R

in the transport domain

Check for
updates

David Chaves-Fraga ", Freddy Priyatna, Andrea Cimmino, Jhon Toledo, Edna Ruckhaus,

Oscar Corcho

Ontology Engineering Group, Universidad Politécnica de Madrid, Boadilla del Monte, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 4 October 2019

Received in revised form 6 July 2020
Accepted 28 July 2020

Available online 8 August 2020

Keywords:

Virtual knowledge graph
Benchmark

Query translation

Data integration

GTFS

A large number of datasets are being made available on the Web using a variety of formats and
according to diverse data models. Ontology Based Data Integration (OBDI) has been traditionally
proposed as a mechanism to facilitate access to such heterogeneous datasets, providing a unified view
over their data by means of ontologies. Recently, the term “Virtual Knowledge Graph Access” has begun
to be used to refer to the mechanisms that provide query-based access to knowledge graphs virtually
generated from heterogeneous data sources. Several OBDI engines exist in the state of the art, with
overlapping capabilities but also clear differences among them (in terms of the data formats that they
can deal with, mapping languages that they support, query expressivity that they allow, etc.). These
engines have been evaluated with different testbeds and benchmarks. However, their heterogeneity has
made it difficult to come up with a common comprehensive benchmark that allows for comparisons
among them to facilitate their selection by practitioners, and more importantly, for their continuous
improvement by the teams that maintain them. In this paper we present GTFS-Madrid-Bench, a
benchmark to evaluate OBDI engines that can be used for the provision of access mechanisms to
virtual knowledge graphs. Our proposal introduces several scenarios that aim at measuring the query
capabilities, performance and scalability of all these engines, considering their heterogeneity. The data
sources used in our benchmark are derived from the GTFS data files of the subway network of Madrid.
They have been transformed into several formats (CSV, JSON, SQL and XML) and scaled up. The query
set aims at addressing a representative number of SPARQL 1.1 features while covering usual queries

that data consumers may be interested in.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

of such open data on the Web. Different techniques and tools
have been used to address this problem. In our work, we focus

Over the last few years, a growing number of datasets have
been made available in various open data portals. For example,
at the time of writing, the European Data Portal! aggregates
approximately 500 K datasets from EU countries in a diversity
of domains. In this context, RDF has been proposed as a stan-
dard format for data interchange on the Web, and RDF Schema
and OWL ontologies have begun to appear so as to provide
shared models in some domains. However, the amount of non-
RDF data (e.g., CSV, JSON, XML) that are published in these open
data portals continues to dominate the scene (see Table 1), and
interoperability issues hinder their (re)use and consumption.

Data integration is not a new problem, it was already identi-
fied and addressed several decades ago with an emphasis on data
in relational databases, but it is exacerbated by the availability

* Corresponding author.
E-mail address: dchaves@fi.upm.es (D. Chaves-Fraga).

1 https://www.europeandataportal.eu/catalogue-statistics/Evolution.

https://doi.org/10.1016/j.websem.2020.100596

on those approaches based on ontologies. In Ontology Based Data
Access (OBDA) [1] data consumers issue queries over a dataset
according to a common unified view (an ontology). The informa-
tion needed to reformulate the queries is usually available in the
form of declarative mappings. In Ontology Based Data Integration
(OBDI) [1], these techniques are expanded to address hetero-
geneous datasets, whose data need to be integrated to provide
answers to these queries. In both ontology-based approaches,
two different alternatives exist to enable data access: (1) those
where data are materialized taking into account the mappings
and the ontologies (for example, data is transformed into RDF and
loaded into a triple store, so that it can be queried using SPARQL),
and (2) those where the transformation is done on the queries,
which can then be evaluated on the original data sources. This last
alternative is the one considered for our work, because it removes
the need for materialization, something especially useful for very
dynamic data sources [2]. We refer to it as “virtualized knowledge
graph access”.

1570-8268/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.websem.2020.100596
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2020.100596&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:dchaves@fi.upm.es
https://www.europeandataportal.eu/catalogue-statistics/Evolution
https://doi.org/10.1016/j.websem.2020.100596
http://creativecommons.org/licenses/by/4.0/

2 D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. / Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596

Table 1
Most commonly used formats (and percentage over the total number of datasets)
to publish data in mature EU open data portals.

Data portal 1st format 2nd format 3rd format
Spain CSV (50%) XLS (35%) JSON (33%)
Norway CSV (77%) GEOJSON (17%) JSON (14%)
Italy CSV (76%) JSON (35%) XML (25%)
Croatia XLS (63%) CSV (40%) HTML (33%)
Luxembourg ZIP (25%) CSV (24%) PDF (18%)
Ireland JSON (49%) CSV (39%) TXT (22%)

To facilitate data exploitation in this context, application de-
velopers need to understand the strengths and weaknesses of
existing data integration tools. Additionally, tool developers may
want to know if their engines cover the requirements of real-
use-case scenarios. In both cases the challenge is to develop a
benchmark that covers the requirements for virtual knowledge
graph access, and to ensure that is extensible and sustainable over
time. In general, it is necessary to have an overview of state of the
art engines that are tailored to different source formats, accepting
as input those mappings that are represented in a variety of
declarative languages.

Several benchmarks already exist in the state of the art of
OBDA [3,4], as well as in SPARQL query federation [5-7]. The
OBDA BSBM benchmark [3] is focused on comparing the per-
formance of SPARQL-to-SQL query translation versus the perfor-
mance of native RDF Stores, and only considers OBDA engines
that access relational data stores. The NPD benchmark [4] specif-
ically analyzes OBDA requirements related to datasets, query
sets, mapping rules and query languages. In the area of fed-
erated SPARQL engines, existing benchmarks [5-7] are tailored
to the context of SPARQL endpoint federation in an homoge-
neous format. As a result, none of these benchmarks address
the requirement of virtualized access of multiple datasets avail-
able in heterogeneous formats. Additionally, OBDI engines have
been evaluated in an ad-hoc manner [8,9] and to the best of
our knowledge, no benchmarks have been developed to evaluate
OBDI proposals in a systematic manner.

We have identified several challenges for the development
of a benchmark for virtual knowledge graph access that can be
grouped into data, queries and mappings dimensions. The data
challenges refer to having multiple data sources in an assortment
of formats, based on real-world data and that can scale to large
sizes. The queries challenges point to SPARQL queries where dif-
ferent sources can be identified, where relations among sources
(according to the specific data model) are exploited, and where
necessary features of SPARQL are included to represent real-life
use cases. Finally, the main mappings challenge is to include the
relevant parameters that affect the generation of the knowledge
graph [10] and give support to a set of mapping languages.

In this paper we describe a virtual knowledge graph access
benchmark, GTFS-Madrid-Bench, that serves several purposes:
(i) to evaluate and compare the performance of a mix of OBDA
engines that access several (homogeneous) sources in the same
format, but where the mapping language used by each engine
is specific to the data format considered; (ii) to evaluate OBDI
engines when data are centralized in a single location; and (iii)
to evaluate the strengths and weaknesses of both, OBDA and
OBDI engines. The general case of GTFS-Madrid-Bench is the
comparison of the performance of OBDA and OBDI engines. The
proposed benchmark is composed of the following elements:

2 Statistics obtained in January 2019 (note that one dataset can be made
available in multiple formats).

e Several collections of sources in different formats (e.g. CSV,
JSON, SQL, XML), which derive from the GTFS. > The Gen-
eral Transit Feed Specification (GTFS) is a de-facto standard
developed by Google for the description of public transport
planning, routes and fares, among others. In recent years
its popularity has increased thanks to its simplicity and the
fact that it has not only been adopted by Google Maps, but
also by other route planning systems such as Open Trip
Planner or navitia.io. feed from the city of Madrid metro.
These collections are scaled up so as to allow scalability
testing.

e A set of mappings represented in the family of declara-
tive languages that address different source formats (RML,
R2RML, XR2RML, ontop OBDA mappings) that map the GTFS-
based data sources into the Linked GTFS ontology.*

e A set of 18 SPARQL queries of varied complexity.

A set of well-established measurements [4,11] that can be

taken during the different phases of the OBDI workflow [4,

12], such as query rewriting, query translation, query exe-

cution and query aggregation time.

GTFS-Madrid-Bench offers a fair environment for the comparison
of different OBDA and OBDI engines, regardless of the mapping
language they have implemented, as long as the new mappings
follow the same restrictions and specifications defined in the
benchmark. Thus, newly released tools may be evaluated with
the benchmark. Additionally, although we have generated our
datasets from the GTFS feed of the city of Madrid metro sys-
tem, any other city’s GTFS feed may be used as data in the
benchmark. We provide a data generator to scale up the original
data in terms of size, and distribute the datasets over different
formats (e.g. JSON, XML, CSV, RDB). We demonstrate the use of
GTFS-Madrid-Bench with five open-source engines: Morph-RDB,”
Ontop,® Ontario,” Morph-CSV.® and Morph-xR2RML?
In summary, the main contributions of this work are:

1. C1: The proposal of a comprehensive and representative
benchmark that includes a set of data sources, queries and
mappings to be able to evaluate and comparing multi-
ple OBDA and OBDI engines for virtual knowledge graph
access.

2. C2: The extension of existing OBDA benchmark require-
ments to take into account (i) metrics that are commonly
used in federated query-processing benchmarks; and (ii)
steps defined in the new generation of OBDA and OBDI
engines [2].

3. C3: A data generation process where single and mixed data
formats are scaled-up based on the features of the origi-
nal data model, integrating state of the art data-generator
proposals for benchmark OBDA engines [13].

4. C4: Evaluation of the proposed benchmark over five differ-
ent engines, discussion of the obtained results, and identi-
fication of the current limitations in the state of the art and
future lines of work.

The rest of this paper is structured as follows: Section 2 intro-
duces several notions and definitions relevant for the proposed
work; Section 3 presents GTFS-Madrid-Bench and its main fea-
tures, i.e. queries, datasets, mappings and metrics; Section 4 re-
ports our experiment on evaluating five open source engines over

https://developers.google.com/transit/gtfs/.
https://github.com/OpenTransport/linked- gtfs.
https://github.com/oeg-upm/morph-rdb.
https://github.com/ontop/ontop.
https://github.com/SDM-TIB/Ontario.
https://github.com/oeg-upm/morph-csv.
https://github.com/frmichel/morph-xr2rml.

O 00 N O U AW

https://developers.google.com/transit/gtfs/
https://github.com/OpenTransport/linked-gtfs
https://github.com/oeg-upm/morph-rdb
https://github.com/ontop/ontop
https://github.com/SDM-TIB/Ontario
https://github.com/oeg-upm/morph-csv
https://github.com/frmichel/morph-xr2rml

D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. /| Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596 3

GTFS-Madrid-Bench; we discuss our findings in Section 5; Sec-
tion 6 reports the related work in OBDA and SPARQL federation
benchmarks, OBDA/OBDI approaches and mapping languages;
and finally, Section 7 recaps our findings and conclusions.

2. Preliminaries

In this section, we introduce the main concepts and definitions
that are later used to explain our work. Besides this, well-known
concepts from the literature such as SPARQL queries and result
sets [14], or ontologies [15], will be used throughout the paper.

Sources & dataset: we define a source as a tuple y = (¢, X, f),
where ¢ is the data of any entity from our domain, X' is the model
of the data, e.g. the columns of a CSV or the schema of a database
table for SQL, and f is a specific data format such as CSV, JSON,
XML, or SQL, among others. We define a dataset as a set of Sources,

i.e., D= {)/1, Y2500 Vn}

Example 1. We define the following dataset D; = {(Routes,
X1, SQL), (Stops, X, JSON)} that involves the data of the metro
routes (13 instances) and metro stops (1262 instances) in SQL
and JSON formats, respectively. Both sources rely on different
schemata X'; and X, the first specifies the columns of a table,
and the second the JSON keys.

Dataset generator: we define a dataset generator as a function §
that takes as input a tuple (D, s), where D is a dataset and s is a
non-negative number that specifies a scale factor. The output of
§ is a dataset D’ containing enlarged versions, according to s, of
the data (¢) within the sources of D.

Example 2. Assuming D; from Example 1 and a scale factor s
of 2.5, a dataset generator may produce the following D' =
{(Routes—2.5, X1, SQL), (Stops—2.5, X, JSON)}. The schemata and
the formats are the same, but the data of Routes2.5 and Stops2.5
has been scaled up from their versions in D, containing 189 and
3536 instances respectively.

Mapping: a mapping m is a set of rules that specify the rela-
tionship between an ontology and the model of one or more
sources. A mapping rule relates the elements within the schema
of a source, with elements from an ontology, including constants.
In other words, a mapping rule r contains the correspondences
between an element e within a schema of a source ¥ and an
element e, of an ontology X,. The ontology is known as a unified
view, since it is the output of translating heterogeneous sources
into the same model.

Example 3. Given the Linked GTFS ontology and a CSV file with
the columns “id” and “route”, a mapping may state that each row
generates a subject that includes the value of the column “id’, the
predicate foaf:name, and its object with the corresponding value
in the column “route”.

Experiment configuration: we define an experiment configuration
c as (D, q, M) where D is a dataset, g is an SPARQL query and M
is a set of mappings.

Example 4. We can specify the following experiment configura-
tion (Dq, q1, {shapes, trips}), where D; is the dataset specified in
Example 1, q; is the SPARQL query reported in Table 5, and M is
the set of mappings {shapes, trips} reported in Table 4.

Processor: Given an experiment configuration ¢ and an ontology
X, a processor represents a software component that encodes
the function ¢ that takes as input a pair (¢, X,), and outputs a
SPARQL result set R [14].

Internally, the processor translates the SPARQL query q into
one or more queries expressed in different languages, depending
on the formats within the dataset of c, using the mappings M.
Then, the processor distributes and evaluates the queries and
gathers the results. Consequently, a unified result set is provided
as output. This task is known as Virtual Knowledge Graph Ac-
cess. We distinguish two kinds of processors: OBDA and OBDI.
The former are able to handle only experiment configurations
where all the data sources have the same data format, while the
latter are able to handle any experiment configuration.

3. The GTFS-Madrid-Bench

The GTFS-Madrid Benchmark consists of an ontology, an initial
dataset of the metro system of Madrid following the GTFS model,
a set of mappings in several specifications, a set of queries accord-
ing to the ontology that cover relevant features of the SPARQL
query language, a data generator based on a state of the art pro-
posal [13], and a set of relevant metrics. In the following sections
we describe in detail the resources of our virtual knowledge graph
access benchmark. They are aligned with an extension of the
requirements detailed in [4] (focused on benchmarks for OBDA)
that we tailor to our context (Table 2). All the resources described
in this section are available online.'’

3.1. The linked GTFS ontology

GTFS is a de-facto standard developed by Google for the de-
scription of public transport schedules, routes, fares, etc. The
specification defines the headers of 13 types of CSV files and a
set of rules. Each file, as well as their headers, can be mandatory
or optional and they have relations among them.

The Linked GTFS vocabulary'! can be seen as an ontology that
represents the entities, properties and relationships described in
the GTFS specification. The GTFS-Madrid-Bench mappings have
been aligned to a subset of this vocabulary, since the subway
feed provides only the mandatory CSV files from the GTFS spec-
ification. Its conceptual model is shown in Fig. 1, and a de-
scription of its classes is given in Table 3. The ontology usually
defines one class for each of the sources in the GTFS specifi-
cation with the corresponding data and object properties, but
there are some additions. The gtfs:Service class represents
information on the dates when a service (represented in GTFS
in the files calendar and calendar_dates) is available for one or
more routes; the ontology also adds the gtfs:ServiceRule
class, together with its two subclasses (gtfs:CalendarRule
and gtfs:CalendarDateRule), to represent the service rules
specified in the calendar and calendar_dates files. Finally, the
class gtfs:WheelchairBoardingStatus and its three possi-
ble values (instances) have also been added to represent the
corresponding field definitions in stops and trips.

In general, all of the ontology classes have been populated
except for gtfs:FareClass and gtfs:FareRule, because the
Madrid GTFS data does not contain information on these two
entities. The gtfs:RouteType class is not considered, because
the data covers only the Metro system.

10 https://github.com/oeg-upm/gtfs-bench.

1 https://github.com/OpenTransport/linked- gtfs.

https://github.com/oeg-upm/gtfs-bench
https://github.com/OpenTransport/linked-gtfs

4 D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. / Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596

Table 2
Virtual Knowledge Graph Access Benchmark Requirements.

Variable Requirement
Ontology The ontology should include classes with data and object properties
Dataset The virtual instance should maintain the constraints defined in the original dataset
Dataset The virtual instance should be based on real world data
Dataset The virtual instance should be distributed in different data formats
Mappings The mappings should be able to indicate the format of the source
Mappings The mappings should be expressed using well known mapping languages
Queries The query set should be based on actual user queries
Queries The query set should be complex enough with relations among same but also different data sources
Metrics The metrics should provide relevant general information but also specific measures for each defined phase
Table 3
LinkedGTFS classes and their descriptions.
Class Description
Agency Agency that operates a certain transport mode
Stop Physical location where a vehicle stops or leaves. Multiple routes may use the same stop.A stop may be wheelchair-accessible.
Route Collection of one or more trips.Usually two trips in each direction.
Trips A trip in a certain direction passes by several stops.A trip is associated with a shape.
StopTimes An ordered sequence of stops.Includes their arrival and departure times.
Service Set of dates when a service is available.A Service follows a rule that may have exceptions.
ServiceRule May be a calendar rule or a calendar date rule.

CalendarRule
CalendarDateRule
Shape
Frequency
WheelchairBoardingStatus

For a certain period, weekdays where active.

Date to add or delete a service.
A polygon associated to a trip.
Frequency of a trip.

Indicates whether wheelchair boarding is possible.Available for a trip or a stop.

gtfs:Agency gtfs:Shape gtfs:Frequency
gtfs:agency
T —gtfs:tripJ
gtfs:shape
y
gtfs:Route | ® gtfs:rout gtfs:Trip —I
Y
gtfs:service
q gtfs:trip
otfs:StopTime

gtfs:Service

gtfsistop | gtfs:wheelchair gtfs:wheelchair
Accessible Accessible .
gtfs:serviceRule
gtfs:parentStation
gtfs:Stop gstz)::’v(ﬁzeeslfanig < gtfs:ServiceRule
ardingstatus |
A
gtfs:CalendarRule gﬂ;:(t:a::? nldar
Class Object Property subClassOf alesiu'e

Fig. 1. LinkedGTFS Ontology. Subset of the LinkedGTFS ontology used in the GTFS-Madrid-Bench for virtual knowledge graph access. There are eleven object property

relations among the classes, and two subClassOf relations.

3.2. Dataset generation

Dataset generation for a virtual knowledge graph access
benchmark should be focused on the two main variables that
allow testing the capabilities of the engines: (i) data size, and
(ii) formats in which data can be expressed. In the context of
data generation for OBDA, VIG [13] proposes the use of R2ZRML
mappings for an efficient scale-up of the size of an RDB dataset
instance. In this case, only one data format (SQL) is involved in
the process.

We use GTFS as the original data source for several reasons:
First, GTFS has been the de-facto standard for publishing transport

data on the web; it also comes with a clear specification, making
it easy to understand. Second, the GTFS model comprises several
entities that are related through a variety of relationships. In
addition it includes different data types such as strings, integers,
and booleans. Finally, many cities have adopted the GTFS data
model and have published their GTFS data online. Although in
our benchmark we propose the use of the GTFS Madrid subway
data, GTFS data from a different city could be used as the original
data source.

The GTFS-Madrid-Bench proposes an extended workflow
which uses VIG as the data generator engine for the generation of
the datasets, and takes into account multiple data formats (see an

D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. /| Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596 5

example in Fig. 2). We describe the detailed steps of the proposed
data generation workflow, together with some examples:

(1) Data preparation. The original data source, GTES, is in CSV

format. VIG requires an instance of an RDB and an R2RML
mapping for scaling up the data source. We use Morph-
CSV [16], which takes as inputs a set of spreadsheets in
the form of CSV files, their corresponding annotations using
CSVW [17], and an RML mapping [18]. It automatically
produces the corresponding schema of an RDB (identifying
typical constraints such as datatypes, PK/FK, indexes and
NULLs) and an R2RML mapping document, which are the
inputs for VIG.
For the Madrid-GTFS-Bench, we use as input an open
dataset GTFSY; = (GTFSyqq, GTFS, CSV). GTFSqq is the set
of data sources of the subway network of Madrid that
has been provided by its transport authority according
to the schema GTFS as described in its specification.'?
This dataset is composed of a set of CSV files containing
data of Agency, Route, Shape, Frequency, Trip, StopTime,
Stop, Calendar and CalendarRule. This input is not modified
during process, which means that the generated datasets
are defined by the same schema, and all of the generated
data is obtained from this initial dataset. We manually
create the corresponding RML mapping rules and CSVW
metadata annotations and, using the Morph-CSV engine,
we automatically generate the corresponding RDB instance
GTFS-SQL—1=(GTFS,S,‘,7(’1d, (1) dataset with the integrity and
domain constraints of the source model, and the R2RML
mapping rules.

(2) Data creation. VIG [13] takes into account the ontology and

the set of RZRML mappings to generate each dataset. This

engine also receives as input a scale value s that indicates
that the size of each table of the database increases s times.

The output of VIG is a set of CSV files, one file for each table

of the RDB. In this step the dataset GTFS-CSV-s=(GTFSG,,

(s) is generated, where s is the selected scale value.

Data distribution. Finally, each dataset generated using

VIG is distributed in several formats. We use open source

tools to perform this step such as csv2json, from Python

CSVKit,"® and di-csv2xml,'* depending on the data for-

mats (JSON and XML). We divide the distribution into

two categories in order to cover both OBDA and OBDI
approaches:

In the first category, focused on providing support to OBDA

techniques, the sources of each dataset are transformed

into a single format (e.g. CSV files are transformed into

JSON files). The dataset is transformed to the corresponding

one in JSON, XML, SQL and MongoDB, obtaining the fol-

lowing datasets: GTFS—F—S=(GTFSﬁ1ad, (s) where s is the scale
value and F € {JSON, XML, SQL, MongoDB}.

In the second category, focused on OBDI approaches, the

sources of each dataset are transformed from the CSV files

into multiple formats (e.g. CALENDAR is a JSON document,

AGENCY is an XML file, etc.). The benchmark provides

a configurable generator to obtain the desirable dataset.

More in detail, the user may select the sources associated to

each format, and then the tool generates the corresponding

dataset and set of mapping rules. With this approach, the
data distribution in the benchmark has the flexibility that
allows the study of the impact of different parameters
that affect the virtual knowledge graph access engines.

—
)
—

12 https://developers.google.com/transit/gtfs/.
13 https://csvkit.readthedocs.io/en/1.0.3/scripts/csvjson.html.
14 https://github.com/blue-yonder/di-csv2xml.

GTFS-CSV-1 CSVW RML
GTFS-RDB-1 R2RML
AN
Creation (s=10) (2)
GTFS-CSV-10
Distribution (3)

pd AN

Sources in single format: Sources in multiple formats:

- GTFS-CSV-10 - GTFS-DIST1-10

- GTFS-XML-10 - GTFS-DIST2-10

- GTFS-JSON-10 - GTFS-DIST3-10

- GTFS-SQL-10 -

- GTFS-MongoDB-10 -
[] Data [Declarative Mapping
D Process D CSV Annotations

Fig. 2. GTFS-Madrid-Bench Generation Workflow with scale value 10. From
the original 10 CSV files of Madrid Metro GTFS (1) we use Morph-CSV to
generate the corresponding RDB instance and an R2RML mapping that are the
required inputs for (2) scaling up the data using VIG and (3) distributing the
generated dataset to different formats.

For example, a parameter that can be studied is the join
selectivity. The value of this parameter between shapes and
trips is different than between routes and agencies, and
depending on the format of each source, the total query
execution time of a processor may be impacted. Other
parameters such as the number of joins among sources in
same/different formats and the impact of the data size in
different sources can also be studied.

We want to be able to compare the results obtained by pro-
cessors, with the results obtained by the materialized graph in
RDF. For this purpose, we take the output of VIG (e.g GTFS-CSV-
5, GTFS-CSV-10) and we run a knowledge graph creation process
using the SDM-RDFizer! engine, which generates the material-
ized KG in RDF using RML mapping rules. We selected this tool
because it passed all the RML Test Cases [19] for CSV files, ' hence
we assume that the generation is correct and that it provides a
set of techniques to optimize the generation of RDF at scale.

3.3. Mappings

Mappings play one of the most important roles in the bench-
mark since they are the main element used for the query trans-
lation process. In the state of the art there are multiple engines
and tools that use different mapping languages. We select a set
of the most relevant declarative mapping languages in the state
of the art and we generate the corresponding mapping rules. In
more detail, the GTFS-Madrid-Bench provides:

e One R2RML mapping document for accessing SQL datasets.

15 https://github.com/SDM-TIB/SDM-RDFizer.

16 http://rml.io/implementation-report/.

https://developers.google.com/transit/gtfs/
https://csvkit.readthedocs.io/en/1.0.3/scripts/csvjson.html
https://github.com/blue-yonder/di-csv2xml
https://github.com/SDM-TIB/SDM-RDFizer
http://rml.io/implementation-report/

6 D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. / Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596

Table 4

Mapping features of GTFS. Each TriplesMap of the GTFS mapping file and its corresponding features: the related source, number of Classes,

PredicateObjectMaps, Predicates, Objects and RefObjectMaps (joins).

TriplesMap Source Classes #PredicateObjectMap #Predicates #0bjects #RefObjectMap
shapes shapes gtfs:Shape 4 4 4 0
trips trips gtfs:Trip 8 8 5 4
calendar_rules calendar gtfs:CalendarRule 9 9 9 0
calendar_date_rules calendar_dates gtfs:CalendarDateRule 2 2 2 0
stops stops gtfs:Stop 12 12 11 1
stoptimes stop_times gtfs:StopTime 9 9 7 2
routes routes gtfs:Route 8 8 7 1
agency agency gtfs:Agency 6 6 6 0
frequencies frequencies gtfs:Frequency 5 5 4 1
feed feed_info gtfs:Feed 6 6 6 0
servicel calendar gtfs:Service 1 1 0 1
service2 calendar_dates gtfs:Service 1 1 0 1
Total 10 11 71 71 60 11

e One xR2RML mapping document for accessing MongoDB 3.4. Queries

datasets.

e Seven RML mapping documents!” for accessing CSV, JSON,
XML, SQL, MongoDB.

e One CSVW metadata file to provide annotations for the CSV
datasets.

e An RML-Generator for obtaining the corresponding map-
pings of datasets with sources in several formats.

Conceptually, all the mappings represent the same relations
among the concepts of the ontology and the concepts of the
GTFS model, but each one has been developed according to a
specification that handles the characteristics of each data format.
The mappings are composed by a set of rules representing the
relation of one element in the ontology with the corresponding
schema element from a source. An overview of the rules within
the mappings developed for this benchmark is shown in Table 4.
These mapping rules are very relevant since they contain many
parameters that impact on the performance of virtual knowledge
graph access tools [10].

More in detail, each source of the GTFS feed has one associated
TriplesMap, with a rule to associate the generated entities to the
class defined in the ontology, and a set of rules for the object and
data properties. Additionally, there is a (virtual) entity, Service,
in the data model, with no corresponding source, which implies
the definition of a set of mapping rules to generate the instances
of the corresponding class (gtfs:Service). Following the GTFS
specification, the identifier of Service can be found either in
calendar or calendar_dates sources. This means that to be aligned
with standard declarative mapping specifications (e.g. RML and
R2RML only allow one source per TriplesMap), the mapping docu-
ment needs to define two TriplesMap, one for calendar (service1)
and another for calendar_dates (service2). This also implies that
the trips TriplesMap has one predicate (gtfs:service) with
two associated refObjectMaps, where the parentTriplesMap are
servicel and service2; this allows generating all gtfs:Service
defined in the original data source. Because the instances of
gtfs:WheelchairBoardingStatus class are only objects in
gtfs:Trips and gtfs:Stops triples, they are generated using
the template property in trips and stops TriplesMap. In summary,
the mapping contains rules to generate instances of 12 classes,
71 PredicateObjectMaps and Predicates, 60 Objects and 11 RefOb-
jectMaps, covering the main features defined in state-of-the-art
mapping specifications for OBDA/OBDI. All of the GTFS mappings
are detailed in Appendix C using YARRRML [20].

17 provided in RML and YARRRML serializations.

Table 5 presents all the variables considered for the 18 queries
in our benchmark. We have developed queries that are based on
the Linked GTFS ontology, and are aligned with user stories in
Madrid’s transport domain, together with different combinations
of values for the variables. It should be mentioned that the queries
cover all of the data sources that were generated by the Madrid’s
transport authority as GTFS data from the metro system. These in-
clude agencies, routes, stops, trips, frequencies, shapes, calendar,
and calendar dates. Although in the benchmark we have defined
mappings to translate queries into the underlying query language
of the source, these are independent from the queries. We have
used these mappings to generate the materialized knowledge
graph in the data generation step.

We have defined two sets of 18 queries with identical tem-
plates but with differences in the constants that appear in sub-
jects or objects of bounded triple patterns: (1) Baseline queries
with constants that belong to Madrid’s GTFS Linked Data, and
(2) VIG queries with constants that belong to the datasets gen-
erated by the tool; these queries are executed in the evaluation
described in Section 4.

3.5. Metrics

In this section we define the metrics that are used to evaluate
the performance of Virtual Knowledge Graph access engines.
The metrics consider the workflow followed by Virtual Knowl-
edge Graph systems, and for each of the steps identified in the
workflow we introduce a set of metrics to be measured and
reported.

The workflow extends the OBDA phases identified by Mora
and Corcho [11], and Lanti et al. [4]. In addition, it includes
some of the steps that are defined by proposals that federate
queries [21]. General metrics to be captured are overall execu-
tion time, completeness of answers and initial delay. Other
metrics may be considered when the engine generates answers
following a continuous behavior [22], such as dief@k or dief@t
proposed in [23]. Additionally, for each phase of a workflow, a
virtual knowledge access engine may capture specific metrics that
allow the identification of bottlenecks in the implementations.
This relevant set of metrics for each phase are: (i) loading time

Table 5

GTFS-Madrid-Bench Queries. Rows correspond to the query identifier, its text in natural language and properties. Columns correspond to the query variables that influence most of the benchmark metrics. Each cell
contains the value of the variable in the query. Additionally, the column Mapping features describes the rules from the general mapping involved in the query where TM means TriplesMap, PSOM means Predicate
Simple Object Map (reference, template or constant) and PROM means Predicate Reference Map (join conditions).

Query Description #Triple #Sources OPTIONAL Aggregation Otherfeatures FILTER #Star-shaped groups Mapping features
Patterns equal to relational w/oconstants w/constants

ql All shapes 4 1 1 0 1TM, 4PSOM

q2 All stops where the latitude is larger than a 5 1 v v 0 1 1TM, 5PSOM
specific value

q3 Accessibility information of all stations 5 1 v v 0 1 1TM, 6PSOM

q4 All agencies and their routes 9 2 v 2 0 2TM, 8PSOM, 1PROM

q5 Services that have been added after a specific date 5 2 v 1 1 3TM, 5PSOM, 2PROM

q6 Number of routes covered by a specific agency 3 2 v 0 2 2TM, 1PSOM, 1PROM

q7 All wheelchair-accessible stops in a specific route 15 4 v DISTINCT v 1 3 6TM, 11PSOM, 5PROM

q8 Routes and their related trips, services, stops and stop times 14 5 v 5 0 8TM, 10PSOM, 7PROM

q9 Trips and associated shapes where latitude is larger than a 7 2 v v 1 1 5TM, 4PSOM, 4PROM
specific value

ql0 Number of trips that have a duration over a number of 4 2 DISTINCT v 1 1 2TM, 3PSOM, 1PROM
minutes

ql1 Trips that are available on a certain date 12 3 NOT EXISTS v 3 2 5TM, 5PSOM, 4PROM

ql12 Number of stops that are wheelchair-accessible grouped by 10 4 GROUP BY 3 1 5TM, 7PSOM, 3PROM
route

ql13 The accesses of all stations 6 1 v 0 1 1TM, 3PSOM, 1PROM

ql4 All stops times and their related routes and stops ordered by 8 3 v ORDER BY 3 0 2TM, 5PSOM, 3PROM
their sequence, in a specific direction and service

ql5 For all properties, triples that contain a specific word in the 3 1 v 0 1 1T™, 15PSOM, 1PROM
object placeholder

ql6 For all routes, all calendar changes in a specific month 8 3 v 2 1 6TM, 6PSOM, 5PROM

ql7 Trips with their start and end time of the frequencies and 9 3 3 0 3TM, 7PSOM, 2PROM
associated routes

q18 All routes that have trips on Sunday 8 5 UNION 4 1 6TM, 6PSOM, 5PROM

965001 (020Z) S9 qaM 3PIM PIHOM 3yl UO SJUSY puD SIIIALIS ‘AIUIIS SIUDIAS qaM / ‘D 3 owwwy) 'y ‘DuInhild] ‘D8p.f-saapy) ‘q

8 D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. / Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596

Table 6

Relation between each relevant metric for the Madrid-GTFS-Bench and the
dimensions that can impact over that metric. In the Dimension column, Q means
query, M mappings and D data.

Metric

Type or phase Dimension

General Metrics

Total execution time General D,Q M
answers General D,Q M
Initial delay General D,Q M

Dief@k C. Behavior D,Q M
Dief@t C. Behavior D,Q M
Specific Metrics (Phases)
Loading time Starting QM

Mapping trans. time Starting M

requests Distribution Q
Source selec. time Distribution QM
Query gen. time Distribution Q
Query rewrit. time Rewriting Q
Query trans. time Translation QM
Query exec. time Execution QD
Query aggreg. time Finishing D

during the starting phase when the ontology, mappings and query
are loaded; (ii) total number of requests and source selection
time during the source selection phase (the engine identifies
the sources that can be used to answer the query); (iii) query
generation time, when the set of sub-queries to be evaluated
over each data source is created, and the query plan is generated;
(iv) mapping translation time, when the engine must translate
a provided mapping into another one in a different language,
maintaining a set of properties between them [2]; (V) query
rewriting time, when the generated sub-queries are rewritten to
other queries, taking into account potential inferences from the
ontology and information in the mapping [24]; (vi) query trans-
lation time, when the engine, taking the mapping into account,
translates each sub-query to another one in the query language,
supported by the underlying data sources such as SPARQL-to-
SQL [25]; (vii) query execution time, when the translated queries
are evaluated against the underlying data sources and the results
are translated to RDF or as SPARQL bindings using the rules
provided in the mappings; and (viii) query aggregation time,
when the results obtained for each sub-query are aggregated,
including the removal of duplicates and the linking of resources.
Variables that have an impact on the metrics have been grouped
into three dimensions: Query, Data, and Mappings. The relation
between each metric considered and the dimensions that can
impact over that metric is shown in Table 6.

Query. The Query dimension variables refer to the structure of
the queries, e.g. #triple patterns, #sources, and #star-shaped
groups. A Star-shaped group is a group of triple patterns that are
“joined" over the same subject or object variable [26]. The most
common case in real-world scenarios are subject star-shaped
groups that represent properties of one source. The benchmark
considers an increasing number of triple patterns, from 3 to 15,
also, the number of sources vary from 1 to 5. In particular we
have several queries on 1 source with a varying number of triple
patterns, and queries that have a large number of triple patterns
combined with 4 and 5 sources. With respect to these two vari-
ables, our aim is to balance real-life use cases, where several
properties in the specification need to be combined and retrieved,
and query complexity. Furthermore, a large number of sources or
triple patterns combined with a large number of non-instantiated
star-shaped groups should impact overall execution time and
also specifically impact query generation, query rewriting, query
translation, and query execution times.

In general, queries in GTFS-Bench-Madrid combine those that
contain single star-shaped groups (q1, g2, g3, q15) with those that

contain chains of star-shaped groups, that is, where the object of
a pattern in a group is the subject in the next group (with joins
across different sources): q4, g5, g6, q7, q9, q10, q11, q12, q16,
q17, q18. According to the ontology structure shown in Fig. 1,
gtfs:StopTime relates to stops and trips and may lead to hybrid
shapes such as g8 and q14. There is also the case of query q13,
which refers to one source, and contains a self-join that relates
an access to a station to its “parent” station.

Besides, as mentioned in [7], query plans generated by query
evaluation systems during the subquery generation phase may be
affected by the structural properties of a query. If the sources in
the dataset are all represented in the same format (OBDA), then
query plans will be generated by the underlying engine (either
an RDB engine or a NoSQL engine), and execution time will be
affected by the number of joins within star-shaped groups and
among these groups. When the sources of the dataset are not
in the same format (OBDI), the engine has to create the query
plan. The performance will be affected by the plan proposed by
the OBDI engine. Different combinations of these variables are
considered in GTFS-Madrid-Bench queries: on the one hand we
have a large number of triple patterns, sources and star-shaped
groups in q7 and ¢8, and on the other hand queries like q18
combine a large number of sources and star-shaped groups with
a medium-sized query (8 triple patterns).

Complexity of SPARQL queries is presented in [27], considering
the SPARQL fragment with only AND and FILTER operators. Com-
plexity is linear on the product of the dataset size and the size
of the query (# triple patterns), and evaluation is NP-complete
for queries constructed with AND, FILTER and UNION operators.
Several queries in GTFS-Madrid-Bench have FILTER clauses and,
specifically, 18 contains a UNION of two triple patterns.

The evaluation problem becomes harder when the OPTIONAL
operator is added [27]. The work described in [28] presents op-
timization techniques applied in an OBDA setting specifically for
queries that have to deal with OPTIONAL triple patterns, claiming
that the underlying database systems do not optimize adequately
these class of queries. Similar problems may be expected for
querying CSV, XML and JSON data sources. We have designed
eight queries that use OPTIONAL graph patterns (according to the
corresponding non-mandatory attributes in the specification).

Constants in triple patterns together with FILTER with equal-
ity operators increase the selectivity of queries and are likely
to reduce the cost of evaluating the query. According to [7],
instantiated triple patterns have an important impact on the po-
tential number of join intermediate results that may be generated
throughout query execution. However, using a FILTER relational
operator specially in the case of open ranges, e.g. a FILTER with
a > operator, may generate a large number of answers. We have
considered several combinations of number of star-shaped groups
with and without constants; g8 has no constants, whereas in g4
both star-shaped groups in the query have bindings. An example
of an intermediate case occurs in g12 with 1 out of 4 instantiated
star-shaped groups.

Three queries contain the aggregated COUNT function, and one
of these queries contains additionally the GROUP BY modifier.
Other queries use language features like DISTINCT and ORDER,
that will impact on the query execution time metric because all of
them require an ordering of the tuples/entries of the underlying
sources. We cover the impact of these variables in q7 and q10
with DISTINCT, and q12 and q14 with GROUP BY and ORDER
BY respectively. Finally, having unbounded predicates in a query
(q15) increases its complexity, because the search space during
query evaluation may be large.

The work in [29] studies the impact of negation in the compu-
tational complexity of SPARQL queries, it distinguishes four types
of negation: negation of filter constraints, negation as failure,

D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. /| Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596 9

negation by MINUS, and negation by NOT EXISTS. The use of NOT
EXISTS introduces similar issues to sub-query evaluation because
of the presence of correlated variables and the use of a nested
iteration method to evaluate queries that contain this type of
negation. Hence, q11 contains negation with NOT EXISTS.

Mappings. Features of mappings are relevant because they may
impact the performance of the engines. Previous work by [10]
evaluates different mapping variables that impact in the con-
struction of a knowledge graph. Similarly, we consider that the
following mapping variables influence overall query execution
time and, specifically, query translation and query rewriting
times. Regarding structure, we have considered the variables
#Classes, #PredicateObjectMaps, #Predicates, #Objects, and
#RefObjectMap that are presented in Table 4. Another variable
is relation type; the mappings of the Madrid-GTFS-Bench include
1-1, 1-N, N-1 and N-M relation types. In general, mappings for
sources that represent N-M relationships (e.g. stop_times) are
more complex and thus time consuming for query execution.
Additionally, the variable rr:termtype of the rr:objectMap
may also have an effect because the cost of generating a constant,
a reference or a template is not the same.

Dataset. Variables in this dimension include dataset size and
the formats of its sources. As already mentioned in Section 3.2,
datasets with different scale factors are generated in GTFS-
Madrid-Bench. Size has an impact on the overall execution time,
on the initial delay and, specifically, on query execution time
because of the larger number of intermediate results. It also influ-
ences query aggregation time because in the benchmark, queries
against larger datasets generate a larger number of answers.

The format variable may take a single value for datasets in
only one format (RDB, CSV, XML, MongoDB, JSON) or multiple
formats (configurable by the user) This variable has an impact
on the overall execution time, specifically on the query trans-
lation and query execution times, as well as on the number of
answers because different formats have different access methods
and different underlying query languages.

The work in [7] presents partitioning and data distribution
in this dimension. In GTFS-Bench-Madrid there are fixed values
for these variables: the partitioning is vertical and datasets and
databases are loaded in local machines.

4. Evaluation

In this section we describe the evaluation performed using
our benchmark. We first describe the selected OBDA and OBDI
engines involved in the evaluation, we describe the evaluation
methodology and infrastructure, based on the use of docker im-
ages to ensure the reproducibility of the experiments and, finally,
we provide the obtained results. All the resources used in this
evaluation, such as queries, data, mappings, running scripts, re-
sults and docker images for engines and databases are publicly
available online.'8

4.1. Tools

We selected the most relevant open source OBDA and OBDI
engines in the state of the art:
Ontario. Ontario [8]'? is an OBDI engine that is based on the
concept of RDF molecule templates (RDF-MT) [30]. Ontario ex-
ploits the information provided by the mapping rules for cre-
ating the corresponding RDF-MT over the data sources. After
the source selection and sub-query generation processes, On-

18 https://github.com/oeg-upm/gtfs-bench.
19 https://github.com/SDM-TIB/Ontario.

Table 7

Experiment configuration example set. List of experimental configurations and
processors for q4. D is a dataset where s is the scaling factor (i.e., 1, 5, 10, 50,
100, 500), M is the set of mappings, q is the SPARQL query, ¢ is a processor. q
is a SPARQL query defined in the Appendix B.

Query q Dataset D TriplesMap M Processor ¢
{routes,agency}gme Morph-CSV
GTFSS?,-s {routes,agency}garmr Morph-RDB
{routes,agency}rmr Ontario
{routes,agency}gormr Morph-RDB
q4 GTFSSH?LH—S {routes,agency}ruL Ontario
{routes,agency}oppa Ontop
GTFsggggudb-s {routes,agency }xr2ruL Morph-xR2RML
GTFSm -5 {routes,agency g Ontario
GTES) g~ {routes,agency}rus Ontario
GTFSpoi -5 {routes,agency}gms Ontario
GTESpaA™ s {routes,agency}gme Ontario

tario translates the SPARQL query into the corresponding query
language of the original data source. It supports the following
formats: RDF, MySQL, CSV, TSV, JSON, XML, MongoDB and Neo4;j.
Ontop. Ontop [31]2° is an OBDA system that includes both mate-
rialization and virtualization techniques. Ontop translates R2ZRML
mappings into its own mapping language, called “OBDA map-
pings”. These mappings, and a SPARQL query if available, are
transformed into datalog rules, allowing semantic optimization
techniques to be applied, and generating efficient SQL queries
(e.g., self-join elimination). It only supports the SQL format.
Morph-RDB. Morph-RDB [32]%! is an R2RML engine that also
includes materialization and virtualization techniques. The for-
malization of its query translation technique is based on the
R2RML-based extension of SPARQL-to-SQL query translation al-
gorithm proposed by Chebotko et al. [25], originally designed to
work with RDB-backed triples store. Similar to Ontop, several op-
timization techniques are also incorporated in order to generate
more efficient SQL queries. It supports SQL and CSV files.
Morph-xR2RML. Morph-xR2RML [33]%? uses the xR2RML map-
pings to support the generation of RDF lists, and to query data
stored in NoSQL databases such as MongoDB.

Morph-CSV. Morph-CSV [16]%3 exploits the information of CSVW
annotations and RML mappings to enforce implicit constraints
over tabular data. It can be integrated on top of any existing
SPARQL-to-SQL engine in order to enhance query completeness
and performance.

We also intended to include other OBDI engines such as Squer-
all [9] or Polyweb [34]. In both cases, either the code is not
available as open source or it was not feasible to run the engine
due to lack of documentation or mapping or SPARQL opera-
tors features coverage (e.g., Squerall does not support POM with
join conditions or SPARQL queries with OPTIONAL). Issues have
been reported in their corresponding repositories, with the in-
tention of alerting the authors and maintainers about the current
limitations.

4.2. Setup

In this section we describe how we use our benchmark to
evaluate several processors/engines that have been described in
Section 4.1.

We have several experiment configurations for evaluating the
selected processors. As an example, the experiment configura-
tions for query g4 can be seen in Table 7. These experiment

20 https:
21 https:
22 https:
23 https:

/github.com/ontop/ontop.
/github.com/oeg-upm/morph-rdb.
/github.com/frmichel/morph-xr2rml.
/github.com/oeg-upm/morph-csv.

https://github.com/oeg-upm/gtfs-bench
https://github.com/SDM-TIB/Ontario
https://github.com/ontop/ontop
https://github.com/oeg-upm/morph-rdb
https://github.com/frmichel/morph-xr2rml
https://github.com/oeg-upm/morph-csv

10 D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. / Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596

routes agency
shapes trips [+ stop_times
!
service frequencies stops
calendar calendar_dates feed_info

[Jcsv [CJRDB [JJSON [IXML [[JMongoDB
I__iVirtual Entity

---= extjoin —internjoin

Fig. 3. Example of MINEXT] dataset. GTFS "/ dataset distributes the formats
over the data sources ensuring that at least there is one source per each format
and the joins among different formats are minimized. extjoin means that there
is a relation between sources in different formats and internjoin means that the

joins are between sources in the same format.

routes |[----------- ~ agency
B
shapes [+-----1 trips [*------1 stop_times
. !
SN S . : :
i service frequencies stops
i ¥
calendar calendar_dates feed_info

[Jcsv [IRDB [JUSON [IXML [JMongoDB
---= extjoin [i Virtual Entity

Fig. 4. Example of MAXEXT]J dataset. GTFS™**Y dataset distributes the formats

'mad
over the data sources ensuring that at least there is one source per each format

and the joins among different formats are maximized. extjoin means that there
is a relation between sources in different formats.

configurations have a fixed set of mappings with routes and
agencies. The processor used to evaluate this query depends on
the dataset, for example, Ontario in the case of the J[SON dataset
or Morph-RDB and Ontop for SQL.

All the experiment configurations are loaded into a machine
with the following characteristics: 2 GHz CPU with 15 cores, 32
RAM, 200 GB HDD with Ubuntu 18.04 as its operating system.
The machine contains a docker image for each of the proces-
sors: Morph-RDB v3.12.5, Ontop v3.0.0, Morph-CSV v0.1, Ontario
v0.3, Morph-xR2RML-1.1-RC2. All the engines are configured with
the recommended settings provided in the corresponding online
repository.

In terms of data size, we decided to evaluate the engines over
the scale values (5, 10, 50, 100 and 500). After some preliminary
tests, we observed that these values provide a good overview
of the current state of the engines in terms of query evaluation
performance. For each SQL dataset size, we create two docker
images where the data is loaded, one as an instance of the MySQL
Database Server v5.5 and another as an instance of the MySQL
Community Server v8.0. Similarly, for each MongoDB dataset size,
we create a docker image of an instance of the MongoDB Com-
munity Server v3.4 where the dataset is loaded. The rest of the
datasets, which correspond to raw data (CSV, XML and JSON), are
loaded into the machine and are accessible to all the processors.

To test OBDI engines and to demonstrate the capabilities of the
benchmark resources covering multiple scenarios, we chose to
analyze the impact of the number of joins among different for-
mats. The main reason to test this parameters is because Ontario
is focused on improving the performance of these kind of queries.
The dataset were created taking into account the selected formats
(JSON, CSV, XML, SQL and MongoDB) and varying the number of
relations (joins) among different formats. More specifically, the
dataset distributions are the following:

o MINEXT] dataset: The number of joins among sources in
different formats is minimized but ensuring that all of the
formats are covered. The aim of this configuration is to
study the behavior of the engines when they have to deal
with different data sources but where most of the joins
are done between sources in the same format. Hence they
may delegate their treatment to the underlying data source
manager (e.g. MySQL in RDB) and apply common optimiza-
tion techniques in query translation approaches [32]. To
meet this requirement and, having 5 possible formats for
the data sources, the proposed groups for this dataset are:
trips, shapes, calendar and calendar_dates sources in one
group, routes and agency in another, frequencies in the third
group, stop and stop_times in the fourth one and feed_info
in the last one. This composition generates the GTFS%L’Z_EXU
dataset. We show the used dataset in the evaluation in Fig. 3.

o MAXEXT] Dataset: The number of joins among sources in
different formats is maximized and the five formats are
covered. In this distribution, all the possible joins are among
sources in different formats. This means that the OBDI en-
gine may be enforced to perform the joins after the execu-
tion of the translated queries over the original data sources.
In the same manner as the minimized dataset, the groups
of sources are: shapes and stops in one group, trips and
feed_info in another, calendar and agency in the third group,
routes and stop_times in the fourth and calendar_dates and
frequencies in the last one. This composition generates the
GTFSM™ BT qataset. We show the used dataset in the eval-

mad
uation in Fig. 4.

In the case of Morph-RDB, we use it together with the docker
images containing the instances of the MySQL Community Server
v5.5, according to the corresponding documentation. As for
Morph-xR2RML, we use it together with the docker images con-
taining the instances of MongoDB server version v3.4. For these
experimental configurations and processors, we evaluate all the
18 queries both in warm and in cold mode. Each query is run
five times. In warm mode we want to analyze how the cache
mechanism may affect the performance. In order to do so, we first
evaluate the query, discard its result and then run the query again
five times; we then compute the average query execution time.
On the contrary, in cold mode, we want to study the performance
of the processors without the effect of the cache. In order to do so,
we run the query five times and we always restart the database
server after each run, so as to clean all the caches.

Additionally, we use Ontario and Ontop with the docker im-
ages containing the instances of MySQL server v8.0, the latest
version at the time of writing. Note that the use of the cache is
not supported anymore in MySQL v8.0, so that we only evaluate
our queries in cold mode. We perform the rest of the experiment
configurations with Ontario against the CSV and JSON datasets,
and Morph-CSV against CSV datasets.

4.3. Results

In this section we report the results obtained through our ex-
perimental configurations. Table 8 presents the results obtained

D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. /| Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596

Table 8

Overall execution time (in seconds) of benchmark queries in experiment configurations with original size datasets. W means that the engine obtained a different
number of results in comparison to the baseline. E means that the processor is not able to execute the query. TO means that the processor is not able to evaluate

the query within the timeout duration (3600 s).

Dataset Processor Query
Cache Name ql q2 q3 qg4 g5 g6 q7 g8 q9 ql0 ql1 ql12 q13 q14 ql15 ql6 ql17 ql18
Warm Morph-RDB 585 2.07 E 182 W 186 197 E 2602 180 E 181 206 W 189 E 211 E
GTFS-SQL-1 Ontario 18.02 E TO E E E E w E E E E E w E E E E
Cold Morph-RDB 7.14 2.65 E 242 W 236 243 E 2865 238 E 241 269 W 258 E 268 E
Ontop 837 5.04 5.18 E W E w E 16.56 E E E 5.06 W 510 W 500 E
GTFS-MongoDB-1 Warm Morph-xR2RML W w w w W W w W W w w w W 2867 W W 652 W
g Cold Morph-xR2RML W w w w W w w W W w w w W 2817 W W 696 W
Morph-RDB 694 3.04 E 278 E 278 TO E TO 297 E 623 397 E E E 314 E
GTFS-CSV-1 Cold Morph-CSV 15.11 10.88 E 1072 E 995 1084 E 4090 1070 E 11.60 11.82 E E E 1148 W
Ontario w E 1734 E E E E w E E E E E w E E E E
GTFS-XML-1 Cold Ontario E E E E E E E E E E E E E E E E E E
GTFS-JSON-1 Cold Ontario 18.04 E 1714 E E E E w E E E E E w E E E E
GTFS-MINEXTJ-1 Cold Ontario w E E E E E E w E E E E E w E E E E
GTFS-MAXEXTJ-1 Cold Ontario w E 1734 E E E E w E E E E E \W% E E E E

for all the datasets and all the processors with scale 1 and a
timeout of 3600 s (1 h). The rest of the Tables 9-13 report the
results for the other scale values (5, 10, 50, 100 and 500), with
the same timeout. When an engine reports an error (e.g. a SPARQL
query parsing error, memory overhead, etc.), we represent it with
an E in the table. When the engine does not report any error, but
the number of results obtained differs with respect to the baseline
(RDF materialized graph), we represent the cell with a W. We
do not report the total execution time of those queries because,
in general, these cases report 0 results in the execution but
without error, so the time is not relevant. The tables comparing
the number of results obtained by the baseline and the evaluated
engines is reported in Appendix A.

In terms of the comparison among different data formats, we
can observe that CSV and SQL data formats are the ones best
supported by the available engines. In these cases, most of the
engines are able to answer a significant number of queries. As
to the effect of cache, as expected, evaluation in the warm mode
needed less time, yet, the difference is insignificant due to the
relatively small size of the datasets.

We can also see that in general, it takes more time to evaluate
queries over CSV datasets than over SQL datasets. This is expected
because available engines need to first load the CSV dataset in a
SQL database server in order to be able to query the dataset.

This is not the case of other data formats such as JSON and
MongoDB, where the engines are only able to answer one or two
queries. This is even worse in the case of the XML format, where
the only engine that supports it is not able to answer any query.
Similarly, in the distributed format, the only query that can be
answered by the OBDI engine is a query that is evaluated against
a JSON dataset.

This trend holds in the other scale factors up to 100. In the
scale factor 500, only those engines that use SQL datasets are able
to answer queries.

Analyzing the results in general, the errors obtained in the
execution of the queries (E in the tables) over the tested engines
may be due to two main reasons: (i) the engine does not support
a SPARQL operator in the original query (ii) the engine is not able
to manage large (intermediate) results, for example, maintaining
them in memory. Additionally, the differences obtained in terms
of query completeness (W in the tables) may be because: (i) the
engine supports the SPARQL operator, but it does not translate
it correctly to an operator of the underlying database, hence,
the query is executed but the number of results obtained are
different; (ii) the interpretation of the mapping rules is not per-
forming correctly, hence, the semantics of the original query is
not preserved in the translated query.

5. Discussion

In this section, we provide a general analysis of the design,
implementation and execution of Madrid-GTFS-Bench. It should
be pointed out that our aim is to have a proposal that follows
the benchmark requirements and gives a general overview of the
results and problems we observed during the development of the
GTFS-Madrid-Bench. We do not intend to rank the performance
of the evaluated engines, but rather to identify current limitations
in the state of the art in terms of the capabilities of the engines, so
as to provide useful information to the developers of each engine
as well as to general practitioners. We also describe the process
of creating a benchmark for virtual knowledge graph access, and
depict the problems and limitations of the tools employed for
creating its resources. This analysis can be used to solve open
issues, propose improvements and identify future work in the
field.

In terms of the capabilities of OBDA/OBDI engines, the main
issue we observe is that many of them do not support some of
the commonly used SPARQL operators, such as UNION, ORDER
BY and NOT EXISTS. The engines that cover a wider range of
SPARQL operators are the ones that execute a SPARQL-to-SQL
query translation, due to the fact that this technique has been
widely studied in the state of the art [32,35]. The engines that
perform query translation over raw data (e.g. CSV, JSON) or over
a NoSQL database (MongoDB in this case), produce a lot of errors
in the query translation and evaluation processes. For example,
in the case of Ontario, the engine is more focused on the gen-
eration of an efficient query plan (i.e., distributing star-shaped
groups (SSG) taking into account the molecule templates), than
performing a correct translation and execution of each SSG over
the raw data. The engine does not give support to most of the
SPARQL operators, and that is the main reason why it is not able
to answer most of the queries. The same happens in terms of
query evaluation time; some SPARQL-to-SQL approaches include
several optimization techniques [28] so that they can evaluate
the translated queries efficiently, while the other translation tech-
niques that target non SQL query languages are not as efficient.
These observations point out the need for a deeper analysis of the
techniques that perform efficient query translation from SPARQL
to non SQL query languages and raw data (CSV, JSON, XML). Our
main conclusions regarding the obtained results are:

e Only the SPARQL-to-SQL engines provide an acceptable sup-
port for SPARQL operators, although there are still some
operators that are not included (e.g., FILTER NOT EXIST in
Morph-RDB).

12 D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. / Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596

Table 9

Overall execution time (in seconds) of benchmark queries in experiment configurations with size 5 datasets. W means that the engine obtained a different number
of results in comparison to the baseline. E means that the processor is not able to execute the query. TO means that the processor is not able to evaluate the query
within the timeout duration (3600 s).

Dataset Processor Query
Cache Name ql q2 q3 q4 q5 q6 q7 g8 q9 ql0 ql11 ql12 q13 ql14 ql15 q16 ql17 ql18
Warm Morph-RDB 1265 247 E 189 206 178 193 E E 174 E 188 214 458 2838 E 261 E
GTFS-SQL-5 Ontario 117.00 E TO E E E E W E E E E E w E E E E
Cold Morph-RDB 15.14 3.24 E 240 271 234 262 E E 241 E 270 282 559 389 E 339 E
Ontop 13.87 540 5.31 E w E W E W E E E 524 661 W W 537 E
GTFS-MongoDB-5 Warm Morph-xR2RML w w w w w w W W w W w w w TO W W TO W
8 Cold Morph-xR2RML W w w w w w W w w W w w w TO W W TO W
Morph-RDB 1442 438 E 3.81 E 364 TO E TO 657 E TO 1245 E E E 925 E
GTFS-CSV-5 Cold Morph-CSV 4341 W E 3351 E 3444 W E TO 3386 E 36.08 3490 E E E 3526 E
Ontario w E 1834 E E E E W E E E E E w E E E E
GTFS-XML-5 Cold Ontario E E E E E E E E E E E E E E E E E E
GTFS-JSON-5 Cold Ontario w E 15.66 E E E E W E E E E E w E E E E
GTFS-MINEXTJ-5 Cold Ontario w E E E E E E W E E E E E w E E E E
GTFS-MAXEXTJ-5 Cold Ontario w E 1834 E E E E W E E E E E w E E E E

Table 10

Overall execution time (in seconds) of benchmark queries in experiment configurations with size 10 datasets. W means that the engine obtained a different number
of results in comparison to the baseline. E means that the processor is not able to execute the query. TO means that the processor is not able to evaluate the query
within the timeout duration (3600 s).

Dataset Processor Query
Cache Name ql q2 q3 qg4 g5 g6 q7 g8 q9 ql0 ql1 ql2 q13 ql14 ql5 ql6 ql7 ql8
Warm Morph-RDB 2378 2.88 E 193 W 175 197 E E 185 E 194 246 661 346 E 3.07 E
GTFS-SQL-10 Ontario 41560 E TO E E E E W E E E E E w E E E E
Cold Morph-RDB 2725 372 E 254 W 236 255 E E 238 E 250 322 816 448 E 377 E
Ontop 2405 556 5.57 E W E W E W E E E 529 758 W W 562 E
GTFS-MongoDB-10 Warm Morph-xR2RML w \WY \WY w W W w w w W w w w TO W W TO W
g Cold Morph-xR2RML \W \W \W w w W w w w W w w W TO W W TO W
Morph-RDB 2590 6.06 E 520 E 489 TO E TO 1606 E TO 3815 E E E 3890 E
GTFS-CSV-10 Cold Morph-CSV 97.00 W E 6939 E 6878 W E TO 6928 E 7101 6879 E E E 7229 W
Ontario W E 1951 E E E E W E E E E E \W E E E E
GTFS-XML-10 Cold Ontario E E E E E E E E E E E E E E E E E E
GTFS-JSON-10 Cold Ontario w E 1721 E E E E W E E E E E \W E E E E
GTFS-MINEXT]-10 Cold Ontario w E E E E E E W E E E E E \W E E E E
GTFS-MAXEXT]-10 Cold Ontario w E 1951 E E E E W E E E E E \W% E E E E

Table 11

Overall execution time (in seconds) of benchmark queries in experiment configurations with size 50 datasets. W means that the engine obtained a different number
of results in comparison to the baseline. E means that the processor is not able to execute the query. TO means that the processor is not able to evaluate the query
within the timeout duration (3600 s).

Dataset Processor Query

Cache Name ql q2 q3 g4 q5 g6 q7 g8 q9 ql0 ql1 ql12 ql3 ql4 q15 ql16 ql17 ql18
Warm Morph-RDB 10842 491 E 208 W 175 197 E E 189 E 229 369 2255 827 E 556 E
GTFS-SQL-50 Ontario TO E TO E E E E W E E E E E Y E E W E
Cold Morph-RDB 12131 601 E 268 W 231 263 E E 259 E 291 454 2702 1000 E 689 E
Ontop 11989 692 661 E W E W E W E E E 605 1569 W W 731 E
GTFS-MongoDB-50 WArm Morph-xR2RML W W W W W W W WW W W W w TO W W TO W
g Cold Morph-xR2RML W W W W W W W WW W W W w TO W W TO W
Morph-RDB 12840 22.17 E 1985 E 1960 TO E TO 35123 E TO 103929 E E E TO E
GTFS-CSV-50 Cold ~ Morph-CSV ~ 575.15 449.54 E 44260 E 43606 W E TO 44484 E 44312 44774 E E E 44347 W
Ontario w E 3516 E E E E WE E E E E W E E E E
GTFS-XML-50 Cold Ontario E E E E E E E E E E E E E E E E E E
GTFS-JSON-50 Cold Ontario w E 2374 E E E E WE E E E E W E E E E
GTFS-MINEXTJ-50 ~ Cold Ontario w E E E E E E W E E E E E W E E E E
GTFS-MAXEXTJ-50 ~ Cold Ontario w E 3516 E E E E WE E E E E W E E E E
e OBDA/OBDI proposals beyond relational databases are not the analysis of features uniquely associated to these data

mature enough, and more research is needed in order to, sources have to be proposed.
for example, provide wider support of SPARQL operators e The distribution of SPARQL queries over heterogeneous
or generate efficient query plans that take into account sources exploiting mapping rules, and their translation and
parameters such as data format or join selectivity. execution over different query languages, are the two main
e The problem of translating SPARQL queries for querying points for developing robust OBDI engines. Although the
raw data (CSV, JSON, XML) should not be understood as adaptation of current techniques proposed by federated
a technical case of SPARQL-to-SQL where the management SPARQL engines to OBDI has been successfully proved in [8,
of the data is delegated to RDB wrappers such as Presto, 9], they do not support the majority of the SPARQL operators

Spark and Apache Drill. Techniques and optimizations, and and they do not correctly execute the queries when the data

D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. /| Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596 13

source is beyond RDB instances. New investigation should
be performed to address these issues.

Additionally, in our evaluation we only have the possibility of
obtaining the total execution time of each engine. Other metrics
are proposed in the benchmark, such as initial delay, loading time
or query translation time. However, they are only available in
some of the engines. We point out the importance of providing
all these metrics to identify possible bottlenecks in the evaluation
process.

We have also found possible improvements in terms of data
and mapping generation in the process of creating the resources
in this benchmark. In the data generation process, one of the
main improvements may be the incorporation of semantics. For
example, in our benchmark we have a file that represents the
calendar of the trips, which has a start and an end date. The data
generator should validate that the start date must be earlier than
the end date, so that queries can be created to exploit this con-
straint. Another example that would improve with the inclusion
of semantics is the scaling of dataset sources that are related and
may be “joined”. Currently, even if each dataset is scaled, the
number of tuples per join-attribute value does not change. Ideally,
this should be scaled only in certain cases. Additionally, the
inclusion of a set of constraints or validation rules may improve
this process (e.g. define a range of possible values for a column).

With respect to the mapping generation process, we find two
main issues. First, as mappings need to relate the ontology with
the data source, the raw data need some changes in a pre-
processing step in order to be aligned with the features of the
ontology (e.g classes or properties). There are some proposals
to include these transformation functions in mappings, such as
the Function Ontology [36] or R2ZRML-F [37], but at the moment
of writing only Squerall and Morph-CSV are able to parse RML
mappings with functions(RML+FnO) Finally, we have to create
manually the mapping documents required to test the engines.
Following the proposal in [2], an improvement will be to be able
to define the mappings conceptually, independently of the lan-
guage, and then, have techniques to translate them to a specific
language. With this approach we will ensure the correctness of
the mappings.

5.1. Sustainability and extensibility

The Madrid-GTFS-Bench is supported by a set of robust re-
sources in order to ensure its sustainability. The benchmark can
be adapted to any other virtual knowledge graph access en-
gine that uses other mapping rules languages, or to other non-
declarative proposals. The developers or users only have to create
the mapping documents according to that specification. Addi-
tionally, virtual knowledge graph access engines that work with
other graph query languages (e.g., Morph-GraphQL [38]) can take
advantage of our benchmark.

A set of improvements for the data generation that we have
identified are based on VIG, a robust and efficient engine for the
generation of scalable datasets. Additionally, all the generated
resources are available online,?* and their deployment (engines
and databases) is done using docker images to ensure the re-
producibility of the obtained results. Finally, because we define
the dimensions of mappings and datasets taking into account
the relevant parameters in the process of constructing knowl-
edge graphs [10], this benchmark can be also used to test the
engines called rdfizers, such as RMLMapper,2> RocketRML2® or

24 https://github.com/oeg-upm/gtfs-bench/.
5 https://github.com/RMLio/rmlmapper-java.
26 https://github.com/semantifyit/RocketRML/.

SDM-RDFizer,?” since at this moment there is no proposal to
evaluate the performance and completeness of these engines.

The possibility to extend this benchmark is also one of the
main points that differentiates this proposal to previous ones.
First, multiple benefits are obtained from relying on an open
data model from the transport domain, such as linking this data
with other data from the city, and also having other GTFS trans-
port systems feeds (e.g., metro and train datasets). In addition
to queries that take into account the specific characteristics of
the selected datasets, it is also possible to incorporate more
complex mapping rules with extended features such as specific
transformation functions [36], something difficult to address by
previous proposals, as their data models are usually relational
database oriented [3,4]. The incorporation of these features will
ensure that we cover new characteristics of the new generation of
virtual knowledge graph access engines without having to create
a benchmark from scratch.

6. Related work

In this section we provide an overview of two groups of bench-
mark proposals: benchmarks for federated SPARQL engines, and
benchmarks for SPARQL OBDA engines. Additionally we present
a general description of existing OBDA and OBDI approaches,
and the different proposals of mapping languages that are aimed
at establishing transformation rules between an ontology and
different data representations.

6.1. Federated SPARQL benchmarks

In the context of federated SPARQL engines, many benchmarks
have been proposed to evaluate engines that distribute a SPARQL
query over several RDF-based endpoints, applying techniques
of query distribution when all of the sources are RDF datasets.
Benchmarks that have been proposed are the Fedbench suite [5]
and LSLOD [6].

Fedbench [5] provides a framework to evaluate the efficiency
and effectiveness of federated SPARQL query strategies over three
different datasets: cross-domain, life science, and SP?Bench which
is set in the DBLP context. Evaluation is carried out, and compar-
isons are done on various setups: centralized, local SPARQL end-
points, and federations of endpoints. Another evaluation setup is
the linked data scenario, where sources are retrieved through URI
lookup. For the cross domain and life-science queries, the metrics
are total execution time and number of requests to endpoints. The
metric for the evaluation of SP>Bench is total execution time, and
the Linked Data setting considers execution time and number of
dereferenced sources. The focus of Fedbench is on the evaluation
of different scenarios of RDF data federation. The purpose of
GTFS-Madrid-Bench is to evaluate scenarios where there may be
an assortment of data in different formats, not only RDF, that is,
a centralized heterogeneous setup (currently denoted as a Data
Lake) where the highly dynamic nature of these data require
virtualized access. While Fedbench considers both real-world and
artificial data federations, GTFS-Madrid-Bench is based on the
use of the Madrid subway Linked GTFS feed as a starting point
for the generation of scaled instances in the different formats.
Both Fedbench and GTFS-Madrid-Bench follow a query design
approach in combining SPARQL language coverage and real-world
user requirements, where one of the aspects considered is the
number of sources that need to be accessed in order to answer
the queries.

The work in [7] remarks that there are two groups of variables
(dependent and independent) in federated benchmark definitions

27 https://github.com/SDM-TIB/SDM-RDFizer.

https://github.com/oeg-upm/gtfs-bench/
https://github.com/RMLio/rmlmapper-java
https://github.com/semantifyit/RocketRML/
https://github.com/SDM-TIB/SDM-RDFizer

14

Table 12

D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. / Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596

Overall execution time (in seconds) of benchmark queries in experiment configurations with size 100 datasets. W means that the engine obtained a different number
of results in comparison to the baseline. E means that the processor is not able to execute the query. TO means that the processor is not able to evaluate the query

within the timeout duration (3600 s).

Dataset Processor Query
Cache Name ql q2 q3 qg4 g5 g6 q7 q8 q9 ql10 ql11 ql12 ql3 q14 q15 q16 ql7 ql18
Warm Morph-RDB 221.11 7.48 E 230 W 175 196 E E 199 E 265 468 4244 1551 E 854 E
GTFS-SQL-100 Ontario TO E TO E E E E W E E E E E W E E E E
Cold Morph-RDB 24598 8.83 E 305 W 233 252 E E 263 E 338 576 5099 1945 E 1038 E
Ontop 1,477.38 8.87 8.25 E W E W E W E E E 680 2718 W W 920 E
GTFS-MoneoDB-100 Warm Morph-xR2RML w w w w w W W W W w w w w TO W W TO W
8 Cold Morph-xR2RML w w w w w W w w w w w w w TO W W TO W
Morph-RDB E 4359 E 3852 E 3843 TO E TO 158252 E TO TO E E E TO E
GTFS-CSV-100 Cold Morph-CSV 1,254.19 W E 95843 E 93369 W E TO 95795 E 95153 95293 E E E 94782 W
Ontario w E 8559 E E E E W E E E E E w E E E E
GTFS-XML-100 Cold Ontario E E E E E E E E E E E E E E E E E E
GTFS-JSON-100 Cold Ontario w E 3356 E E E E W E E E E E Y E E E E
GTFS-MINEXTJ-100 Cold Ontario w E E E E E E W E E E E E w E E E E
GTFS-MAXEXTJ-100 Cold Ontario W E 8559 E E E E W E E E E E w E E E E

Table 13

Overall execution time (in seconds) of benchmark queries in experiment configurations with size 500 datasets. W means that the engine obtained a different number
of results in comparison to the baseline. E means that the processor is not able to execute the query. TO means that the processor is not able to evaluate the query

within the timeout duration (3600 s).

Dataset Processor Query
Cache Name ql q2 q3 g4 q5 g6 q7 q8 q9 ql0 ql1 ql12 ql13 ql4 ql5 ql16 ql17 ql18
Warm Morph-RDB TO 29.85 E 339 W 181 196 E E 319 E 634 1360 22035 9372 E 3364 E
GTFS-SQL-500 Ontario TO E TO E E E E W E E E E E W E E E E
Cold Morph-RDB TO 32.71 E 392 W 209 230 E E 362 E 695 1469 21800 99.00 E 3577 E
Ontop W 2093 1717 E W E W E W E E E 1082 11459 W W 2395 E
GTFS-MongoDB-500 Warm Morph-xR2RML W W w w w W W W wW W TO W \W TO w w TO w
g Cold Morph-xR2RML W W w w w W W W wW W W W \W TO \W w TO W
Morph-RDB E TO E TO E TO TO E TO TO E TO TO E E E TO E
GTFS-CSV-500 Cold Morph-CSV TO TO E TO E TO TO E TO TO E TO TO E E E TO TO
Ontario W E E E E E E W E E E E E \W E E E E
GTFS-XML-500 Cold Ontario E E E E E E E E E E E E E E E E E E
GTFS-JSON-500 Cold Ontario w E E E E E E W E E E E E \W E E E E
GTFS-MINEXTJ-500 Cold Ontario \W E E E E E E W E E E E E \W E E E E
GTFS-MAXEXT]J-500 Cold Ontario w E E E E E E W E E E E E w E E E E

that have not been considered, but which may have an impact on
the measurement of engines performance. The independent vari-
ables are those that may be specified to ensure the reproducibility
of the proposed scenarios; they are grouped into four dimensions:
query, data, platform and endpoint. The dependent variables are
those that will be measured during the evaluation: endpoint se-
lection time, execution time (divided into (i) time for first answer,
(ii) time for the distributed reception of query answers, and (iii)
total execution time), and answer completeness. The impact of
the dependent variables on the evaluation metrics is analyzed,
and then different configurations of variables are applied to the
evaluation of FedBench queries. The authors observe that the
performance of the federated query engines is indeed affected
by the group of independent variables. Similarly, GTFS-Madrid-
Bench has also considered in its design and experimental setup
some of these query, data and platform independent variables,
taking into consideration their impact on the execution time.
Some of these are query plan shape, # basic triple patterns, #
of instantiations, usage of query language expressivity, dataset
size and cache on/off. However, some of the variables are not
relevant to GTFS-Madrid-Bench setup, such as those related to the
Endpoint dimension and some of the Data dimension variables,
such as data endpoint distribution.

LSLOD [6] provides queries and real-world data from the life-
science domain. It is very specific to the context of SPARQL
endpoint federation. Several query characteristics are considered
in LSLOD such as number of basic graph patterns, number of triple
patterns, number of join vertices, and use of different SPARQL
clauses. GTFS-Madrid-Bench does not aimed at evaluating feder-
ated SPARQL queries, therefore using LSLOD was not an option.

Unlike GTFS-Madrid-Bench, LSLOD does not include some SPARQL
operators that may impact on the behavior of OBDA/I engines.

6.2. OBDA Benchmarks

Several benchmarks have been developed to measure the per-
formance of SPARQL to SQL query translation of OBDA engine
techniques. The main two proposals in this field are the Berlin
SPARQL Benchmark (BSBM) [3] and the Norwegian Petroleum
Directorate Benchmark (NPD) [4]. The BSBM benchmark sets its
context in the e-commerce domain, and provides a configurable
data generator and a set of SPARQL queries together with their
equivalent SQL queries. This benchmark has been used to com-
pare the query performance of native RDF stores with the perfor-
mance of OBDA engines that execute virtualized SPARQL access
against relational databases.

Similar to BSBM, GTFS-Madrid-Bench uses a data generator
to scale up the size of the dataset used during experimentation.
Unlike BSBM, GTFS-Madrid-Bench is based on real data, using
Madrid subway network data to be more specific, and this data
is aligned with an established data model. Furthermore, BSBM
does not measure specific requirements of OBDA systems, as it
has been developed with the aim of comparing OBDA engines
with native RDF triple stores. Also, it considers only OBDA engines
that access relational data sources. GTFS-Bench-Madrid considers
data sources in multiple formats, thus it is tailored to evaluate
and compare an assortment of OBDA engines and OBDI engines
as well. Specific OBDA requirements have been analyzed by the

D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. /| Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596 15

authors of the NPD benchmark in the setting of a real-world sce-
nario from the oil industry. The nine proposed requirements are
related to the datasets, query sets, mappings and query languages.
The benchmark includes a data generator, VIG [13], to generate
scaled RDB instances that obtain a number of expected triples
from a SPARQL query, using as inputs an ontology, an R2RML
mapping document, and the schema of the RDB together with
its corresponding instance. In our work we extend the workflow
defined in NPD from OBDA to OBDI and hence define the re-
quirements of an OBDI benchmark. Additionally, we extend VIG
in order to transform the RDB scaled instances to the different
data source representations handled by the engines.

Simple queries defined in LSLOD [6] have been used in order to
evaluate the performance of the Ontario [8] engine. In this work,
all of the original RDF datasets were translated into RDB tables.
The idea was to evaluate an heterogeneous setup consisting of
RDF and RDB sources, focused on the source selection problem,
and the generation of the corresponding optimized query plan.
GTFS-Madrid-Bench extends the ideas from this evaluation with
the aim of involving a wider assortment of formats that are
usually available nowadays in the Web. Also, our proposal differs
from LSLOD in the sense that it is supported by an extensible
open data model in a smart city context. Additionally, the sim-
ple queries from LSLOD are focused on the evaluation of the
distribution of star-shaped groups that do not exploit some of
the features of the SPARQL language, such as FILTER, ORDER BY,
GROUP BY and NOT EXISTS, which are relevant in the context of
real-life use cases.

6.3. Virtual OBDA and OBDI approaches

There are multiple proposals focused on the translation of
SPARQL queries to query data in their original format. The concept
of OBDA and OBDI is defined in [1], and the first proposal for
translating SPARQL-to-SQL is defined in [25]. Based on this idea
and with the launch of R2RML [39] as a W3C recommendation,
multiple works are proposed in the optimization of this process
that take into account this mapping specification, such as Morph-
RDB [32], Ontop [35] or Ultrawrap [40]. Additionally, there are
specific studies on how SPARQL operators affect the translation
of the query to SQL [28]. Beyond relational databases, Morph-
XxR2RML [33] formally defines the translation from SPARQL to
NoSQL databases. Finally, Morph-CSV [16] is a proposal to en-
hance the SPARQL-to-SQL process when the data source is a
set of tabular data (i.e. CSV files). It exploits information from
tabular metadata and mapping rules to explicitly enforce implicit
constraints of the original datasets.

There are two main proposals of OBDI engines: Ontario and
Squerall. Ontario [8] is based on the concept of RDF molecule
templates [30] which aims to perform efficient source selec-
tion in a data lake composed of heterogeneous data sources in
their original format. It creates a set of star-shaped sub-queries
that match the RDF Molecule Templates (RDF-MT), and applies
optimization techniques to define the query plan that will be
executed. Similarly, Squerall [9] is a system that implements OBDI
for heterogeneous data sources. It takes input data and mappings,
and offers a middleware that is able to aggregate the intermediate
results in a distributed manner. Although the aforementioned
systems are able to evaluate queries against raw tabular data
and exploit some information encoded in the query, they do not
exploit the constraints declared in annotations or mapping rules
to enhance this process. Polyweb [34] is another proposal that is
able to translate and distribute queries using RML mappings over
relational databases and CSV files.

6.4. Mapping languages

Different mapping languages have been proposed for defining
transformation rules between ontology representation languages

and data sources in different formats; these include SQL and
NoSQL databases, as well as data in plain text such as CSV,
XML and JSON. The RDB2RDF W3C Working Group published
two recommendations for transforming the content of relational
databases into RDF: Direct Mapping [41] and R2RML [39]. The
Direct Mapping approach specifies a set of transformation rules
that requires no intervention from users. R2RML allows specifying
transformation rules, such as how URIs should be generated, in
which columns of the database are used for the transforma-
tion to RDF triples that represent tuples in the original tables,
and so on. After the recommendation was released, new needs
and requirements arose in relation to supporting other formats
beyond relational databases, and this resulted in the creation
of new mapping languages such as RML [18] which considers
data sources in CSV, JSON and XML formats, xR2RML [33] for
MongoDB databases, KR2RML [42] that considers nested data,
CSVW [17] to annotate CSV files on the Web, and D2RML [43] for
XML, JSON and REST/SPARQL endpoints, among others. These are
declarative proposals that define mapping rules, which have some
important features, such as the improving of the maintainability,
readability or understandability of the data integration process.
Non-declarative mapping languages have also been proposed, for
example SPARQL-Generate [44] extends the SPARQL 1.1 by taking
as input an RDF dataset and a set of documents in multiple
formats, and generating RDF through the SPARQL CONSTRUCT
clause.

Current OBDA benchmarks use mappings defined in a single
language according to the underlying format of the engines that
are evaluated. The Ontario [8] OBDI engine has conducted their
evaluation with an extension of the LSLOD benchmark that de-
fines RML mappings. The Squerall [9] engine has picked the BSBM
benchmark and has defined mappings in an extended version of
the RML language that uses functions defined with entities from
the Function Ontology (Fn0).2® The Polyweb tool [34] uses map-
pings defined RML and R2RML mappings; however the system
is not publicly available and thus cannot be reused or extended.
GTFS-Madrid-Bench uses mappings defined mappings in all of the
state of the art mapping languages: RML, R2RML, xR2RML, and
CSVW annotations for tabular data.

7. Conclusions and future work

In this paper we propose a benchmark for virtual knowl-
edge graph access using real data from the transport domain.
The benchmark design considers variables that span all of its
resources (queries, mappings and data) in order to test the capa-
bilities and performance of the processors. GTFS-Madrid-Bench
satisfies requirements that are an extension of those already
identified in existing OBDA benchmarks. Besides, metrics have
been established for each step of the workflow of virtualised
knowledge graph access.

As already discussed, the main objective of this benchmark
is not to provide a ranking of engines, but to provide a set of
resources that can be useful for: (i) practitioners who choose the
engine that best fits their use cases and (ii) developers of vir-
tual knowledge graph access engines to improve their tools and
compare their results with other proposals. As such, we expect
this benchmark to be a stepping stone in this area where much
research and development has been done for decades, but there
is a need for more mature applications to be used in real-world
environments. Indeed, our experimental study has shown that
there are still relevant open issues, such as SPARQL conformance,
semantic preservation in the translation from SPARQL queries to
the query languages used to query raw data (CSV, JSON, XML),

28 https://fno.io/.

https://fno.io/

16

and the application of query evaluation optimization techniques.
With the Madrid-GTFS-Bench we intend to contribute to the
community by providing not only the baseline that can be used
to improve the development of the current engines, but also the
possibility to use it to test new approaches and techniques over
the next years.

The design of this benchmark has been a complex task, since
it had to cover all of the identified requirements and, at the
same time, work on a very general scenario with a mix of OBDA
and OBDI approaches. On the one hand, some of the current
OBDA proposals work with SQL datasets and in general conform
to most of the features of the SPARQL language. Throughout
the experiments we realized that the OBDA proposals that are
designed to work with other formats support fewer features of
the query language, and in general they have issues in their
query translation process. There is a lot of room for improvement
in these proposals, such as generating more efficient queries,
which has been done in the SQL-based OBDA proposals. On the
other hand, we were only able to include in the benchmark
the Ontario OBDI proposal, even though other OBDI proposals
have been published in the literature since it was not feasible to
execute them because of lack of documentation. In all cases, the
evaluation of our benchmark queries with the different engines
exposed the need for improvements in their current releases, in
terms of efficiency and correctness of the results.

It is also worth mentioning that the benchmark is easily ex-
tensible to be used with other data formats and engines. That is,
if in the future there is a requirement to evaluate an engine that
supports a different data format, the only need is to create a script
that translates the data sources from CSV to the corresponding
format.

Table 14

D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. / Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596

Future work includes the development of mapping translation
techniques that involve the different mapping language specifi-
cations. In the context of virtualized knowledge graph access it
would be very useful to help in the development and mainte-
nance of mappings, so as to avoid inconsistencies among map-
pings and errors in the evaluation. Another line of work is to
improve the data generation process to ensure that scaled data
is well aligned with the domain data model.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The work presented in this paper is supported by the project
Semantics for PerfoRmant and scalable INteroperability of mul-
timodal Transport (SPRINT H2020-826172) and by the Span-
ish Ministerio de Economia, Industria y Competitividad and EU
FEDER funds under the DATOS 4.0: RETOS Y SOLUCIONES - UPM
Spanish national project (TIN2016-78011-C4-4-R) and by an FPI
grant (BES-2017-082511).

Appendix A. Completeness of query evaluation

See Tables 14-19.

Completeness of benchmark queries in experiment configurations with GTFS-1 dataset. Minus means that the processor is not able to execute the query (i.e. generates

an error) or it does not evaluate the query within the timeout duration.

Dataset Source Tool Queries

ql q2 qQ3 g4 q5 g6 q7 q8 q9 ql0 ql1 ql2 q13 ql14 ql15 ql6 ql7 ql8

Ontario 58540 - - - - - - 0 - - - - - 0 - - - -

SQL Morph-RDB 58540 765 - 13 84 2 - 151439 1 - 6 734 2234 26 - 855 -

Ontop 58540 765 734 - 0 - 0 - 151439 - - - 734 2234 26 0 855 -

MongoDB Morph-xR2RML 0 0 0 0 0 0 0 0 0 0 0 0 0 2364 0 0 855 0

GTFS-1 Morph-RDB 58540 765 - 13 - 1 - - - 1 - 6 734 - - - 855 -
csv Morph-CSV 58540 765 - 13 - 1 2 - 151439 1 - 6 734 - - - 855 128

Ontario 0 - 734 - - - - - - - - - 0 - - - -

XML Ontario - - - - - - - - - - - - - - - - - -

JSON Ontario 58540 - 734 - - - - 0 - - - - - 0 - - - -

MINEXT] Ontario 0 - - - - - - 0 - - - - - 0 - - - -

MAXEXT] Ontario 0 - 734 - - - - 0 - - - - - 0 - - - -

RDF Virtuoso 58540 765 734 13 28 1 2 4728 151439 1 130 6 734 2364 26 34 855 64

Table 15

Completeness of benchmark queries in experiment configurations with GTFS-5 dataset. Minus means that the processor is not able to execute the query (i.e. generates

an error) or it does not evaluate the query within the timeout duration.

Dataset Source Tool Queries

ql q2 qQ3 g4 q5 g6 q7 q8 q9 ql0 ql11 q12 ql13 ql4 ql5 q16 ql17 ql18

Ontario 176830 - - - - - - 0 - - - - - 0 - - - -

SQL Morph-RDB 176830 3161 - 65 350 1 62 - - 1 - 65 1325 11170 4949 - 4275 -

Ontop 176830 3161 2104 - 0 - 0 - 0 - - - 1325 11170 4828 0 4275 -

MongoDB Morph-xR2RML 0 0 0 0 0 0 o 0 0 0 643 0 0 6593 0 0 337 0

Morph-RDB 176830 3161 - 65 - 1 - - - 1 - - 1325 - - - 4275 -

GTFS-5 Csv Morph-CSV 176830 6310 - 65 - 1 0 - - 1 - 65 1325 - - - 4275 0

Ontario 0 - 2104 - - - - 0 - - - - - 0 - - - -

XML Ontario - - - - - - - - - - - - - - - - _

JSON Ontario 0 - 2104 - - - - 0 - - - - - 0 - - - -

MINEXT] Ontario 0 - - - - - - 0 - - - - - 0 - - - -

MAXEXT] Ontario 0 - 2104 - - - - 0 - - - - - 0 - - - -
RDF Virtuoso 176830 3161 2104 65 350 1 62 23640 359113 1 650 65 1325 11170 4949 2080 4275 624

Table 16

Completeness of benchmark queries in experiment configurations with GTFS-10 dataset. Minus means that the processor is not able to execute the query (i.e. generates an error) or it does not evaluate the query
within the timeout duration.

Dataset Source Tool Queries

ql q2 q3 q4 q5 q6 q7 q8 q9 ql0 qll ql2 ql3 ql4 ql5 ql6 ql7 ql8

Ontario 353660 - - - - - - 0 - - - - - 0 - - - -

SQL Morph-RDB 353660 6312 - 130 700 1 67 - - 1 - 130 2650 22340 8641 - 8550 -

Ontop 353660 6312 4207 - 0 - 0 - 0 - - - 2650 22340 8521 0 8550 -

MongoDB Morph-xR2RML 0 0 0 0 0 0 0 0 0 0 1292 0 0 11348 0 0 5508 0

Morph-RDB 353660 6312 - 130 - 1 - - - 1 - - 2650 - - - 8550 -

GTFS-10 CsvV Morph-CSV 353660 12620 - 130 - 1 0 - 0 1 - 130 2650 - - - 8550 0

Ontario 0 - 4207 - - - - 0 - - - - - 0 - - - -

XML Ontario - - - - - - - - - - - - - - - - - -

JSON Ontario 0 - 4207 - - - - 0 - - - - - 0 - - - -

MINEXT] Ontario 0 - - - - - 0 - - - - - 0 - - - -

MAXEXT] Ontario 0 - 4207 - - - - 0 - - - - - 0 - - - -
RDF Virtuoso 353660 6312 4207 130 350 1 67 47280 718317 1 1300 130 2650 22340 8641 1820 8550 1300

Table 17

Completeness of benchmark queries in experiment configurations with GTFS-50 dataset. Minus means that the processor is not able to execute the query (i.e. generates an error) or it does not evaluate the query
within the timeout duration.

Dataset Source Tool Queries

ql q2 q3 q4 q5 q6 q7 q8 q9 ql0 qll ql2 ql3 ql4 ql5 ql6 ql7 ql8

Ontario - - - - - - - 0 - - - - - 0 - - - -

SQL Morph-RDB 1768300 31550 - 650 3500 1 59 - - 1 - 650 13250 111700 21958 - 42750 -

Ontop 1768300 31550 21034 - 0 - 0 - 0 - - - 13250 111700 17537 0 42750 -

MogoDB Morph-xR2RML 0 0 0 0 0 0 0 0 0 0 5058 0 0 - 0 0 - 0

Morph-RDB 1768300 31550 - 650 - 1 - - - 1 - - 1325 - - - - -

GTFS-50 csv Morph-CSV 1768300 63100 - 650 - 1 0 - 0 1 - 650 13250 - - - 42750 0

Ontario 0 - 21034 - - - - 0 - - - - - 0 - - - -

XML Ontario - - - - - - - - - - - - - - - - - -

JSON Ontario 0 - 21034 - - - - 0 - - - - - 0 - - - -

MINEXT] Ontario 0 - - - - - - 0 - - - - - 0 - - - -

MAXEXT] Ontario 0 - 21034 - - - - 0 - - - - - 0 - - - -
RDF Virtuoso 1768300 31550 21034 650 1750 1 59 236400 3591503 1 6500 650 13250 111700 21958 2730 42750 6500

965001 (020Z) S9 qaM 3PIM PIHOM 3yl UO SJUSY puD SIIIALIS ‘AIUIIS SIUDIAS qaM / ‘D 3 owwwy) 'y ‘DuInhild] ‘D8p.f-saapy) ‘q

LL

Table 18

Completeness of benchmark queries in experiment configurations with GTFS-100 dataset. Minus means that the processor

within the timeout duration.

is not able to execute the query (i.e. generates an error) or it does not evaluate the query

Dataset Source Tools Queries
ql q2 q3 q4 q5 q6 q7 q8 q9 ql0 qll ql2 ql3 ql4 ql5 ql6 ql7 ql8
Ontario - - - - - - - 0 - - - - - 0 - - - -
SQL Morph-RDB 3536600 63100 - 1300 7000 1 67 - - 1 - 1300 26500 223400 35502 - 85500 -
Ontop 3536600 63100 42067 - 0 - 0 - 0 - - - 26500 223400 31080 0 85500 -
MongoDB Morph-xR2RML 0 0 0 0 0 0 0 0 0 0 10336 0 0 - 0 0 - 0
Morph-RDB - 63100 - 1300 - 1 - - - 1 - - - - - - - -
GTFS-100 csv Morph—_CSV 3536600 126200 - 1300 - 1 0 - - 1 - 1300 26500 - - - 85500 0
Ontario 0 - 42067 - - - - 0 - - - - - 0 - - - -
XML Ontario - - - - - - - - - - - - - - - - - -
JSON Ontario 0 - 42067 - - - - 0 - - - - - 0 - - - -
MINEXT] Ontario 0 - - - - - - 0 - - - - - 0 - - - -
MAXEXT] Ontario 0 - 42067 - - - - 0 - - - - - 0 - - - -
RDF Virtuoso 3536600 63100 42067 1300 3500 1 67 472800 7183874 1 13000 1300 26500 223400 35502 1690 85500 13000
Table 19

Completeness of benchmark queries in experiment configurations with GTFS-500 dataset. Minus means that the processor is not able to execute the query (i.e. generates an error) or it does not evaluate the query
within the timeout duration.

Dataset Source Tool Queries
ql q2 q3 q4 q5 q6 q7 q8 q9 ql0 qll ql2 ql3 ql4 ql5 ql6 ql7 ql8
Ontario - - - - - - - 0 - - - - - 0 - - - -
SQL Morph-RDB - 315499 - 6500 35000 1 53 - - 1 - 6500 132500 1117000 38749 - 427500 -
Ontop 0 315499 210334 - 0 -0 - 0 - - - 132500 1117000 34323 0 427500 -
MongoDB Morph-xR2RML 0 0 0 0 1] 0 0 0 0 0 - 0 - 0 0 - 0
Morph-RDB - - - - - - - - - 1 - - - - - - - -
csv Morph-CSV - - - - - - - - - - - - - - - - -
GTFS-500 Ontario 0 - - - - - - 0 - - - - - 0 - - - -
XML Ontario - - - - - - - - - - - - - - - - - -
JSON Ontario - - - - - - - 0 - - - - - 0 - - - -
MINEXT] Ontario 0 - - - - - - 0 - - - - - 0 - - - -
MAXEXT] Ontario 0 - - - - - - 0 - - - - - 0 - - - -
RDF Virtuoso 17683000 315499 210334 6500 17500 1 53 2364000 35919991 1 65000 6500 132500 1117000 38749 2340 427500 65000

81

965001 (020Z) S9 92M aPIM DIOM 3yl Uuo SJuaSy pup SIIALIS ‘DIUIIS :SIPUDWAS Gap| / D 18 ounuwr) 'y ‘DuInhLd *f ‘DIDL-saavy) “q

D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. /| Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596 19

Appendix B. GTFS-Madrid-Bench queries

Listing 1: Prefixes

PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX

rdf: <http://www.w3.o0org/1999/02/22-rdf-syntax-ns#>
rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
foaf: <http://xmlns.com/foaf/0.1/>

gtfs: <http://vocab.gtfs.org/terms#>

geo: <http://www.w3.0rg/2003/01/geo/wgs84_pos#>
dct: <http://purl.org/dc/terms/>

schema: <http://schema.org/>

xsd: <http://www.w3.o0rg/2001/XMLSchema#>

Listing 2: Query 1 - List all shapes with some of their data.

SELECT

* WHERE {

?shape a gtfs:Shape

?shape geo:lat 7shape_pt_lat

?shape geo:long 7shape_pt_lon

?shape gtfs:pointSequence 7shape_pt_sequence

Listing 3: Query 2 - List all stops with some of their data including geographic coordinates, where the latitude is bigger than its mean

SELECT

* WHERE {

?stop a gtfs:Stop

OPTIONAL { ?stop dct:description ?stopDescription . }

OPTIONAL { 7stop gtfs:wheelchairAccessible 7wheelchairAccesible }
7?stop geo:lat 7stoplat

?stop geo:long 7stoplong

FILTER (?stopLat > %LATY%)

Listing 4: Query 3 - Find the accessibility information for the stations, if available

SELECT

* WHERE {

?stop a gtfs:Stop

?stop gtfs:locationType 7location

OPTIONAL { 7stop dct:description ?stopDescription . }

OPTIONAL { ?stop geo:lat ?stoplat ; geo:long ?stoplong . }

OPTIONAL { 7stop gtfs:wheelchairAccessible ?wheelchairAccessible . }
FILTER (?location=<http://transport.linkeddata.es/resource/LocationType/2>)

Listing 5: Query 4 - List all agencies and their routes with some of their data

SELECT

* WHERE {

?route a gtfs:Route

OPTIONAL { 7route gtfs:shortName ?routeShortName . }
OPTIONAL { ?route gtfs:longName 7routelLongName . }
OPTIONAL { ?route dct:description 7routeDescription . }
?route gtfs:agency 7agency

7agency a gtfs:Agency

7agency foaf:page 7agencyPage

7agency foaf:name 7agencyName

OPTIONAL { ?7agency foaf:phone 7agencyPhone . }

20 D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. / Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596

Listing 6: Query 5 - Services that have been added on a specific day

SELECT * WHERE {
?service a gtfs:Service
?service gtfs:serviceRule 7serviceRule
?serviceRule a gtfs:CalendarDateRule
?serviceRule dct:date 7date
?serviceRule gtfs:dateAddition "true
FILTER(?date > %DATEY)

xsd:boolean

Listing 7: Query 6 - Check the number of routes of a particular agency

SELECT (count(?route) as 7nRoutes) WHERE {
?route a gtfs:Route
?route gtfs:agency 7agency
FILTER (7agency=%AGENCY%)

Listing 8: Query 7 - List all wheelchair accessible stops along a particular route, with some of their additional data

SELECT DISTINCT 7?routeShortName ?routeDescription 7tripShortName
?stopDescription 7stoplLat 7stopLong WHERE {
?route a gtfs:Route
OPTIONAL { ?route gtfs:shortName ?7routeShortName . }
OPTIONAL { ?route dct:description ?routeDescription . }
?trip a gtfs:Trip
OPTIONAL { 7trip gtfs:shortName 7tripShortName . }
?trip gtfs:service 7service
?trip gtfs:route 7route
?stopTime a gtfs:StopTime
?stopTime gtfs:trip 7trip
?stopTime gtfs:stop 7stop
?stop a gtfs:Stop
OPTIONAL { 7stop dct:description ?stopDescription . }
OPTIONAL { ?stop geo:lat ?stoplat ; geo:long ?stoplLong . }
?stop gtfs:wheelchairAccessible gtfsaccessible:1l
FILTER (?route=%ROUTE%)

Listing 9: Query 8 - List the routes and their related trips, services, stops and stop times with some of their additional data, if available.

SELECT * WHERE {
?route a gtfs:Route
OPTIONAL { ?route gtfs:shortName 7routeShortName . }
OPTIONAL { ?route dct:description ?routeDescription . }
?trip a gtfs:Trip
OPTIONAL { 7trip gtfs:shortName 7tripShortName . }
?trip gtfs:service 7service
?trip gtfs:route 7route
?stopTime a gtfs:StopTime
?stopTime gtfs:trip 7trip
7?stopTime gtfs:stop 7stop
?stop a gtfs:Stop
OPTIONAL {?stop dct:description 7stopDescription . }
?service a gtfs:Service
?service gtfs:serviceRule 7serviceRule

D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. /| Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596

Listing 10: Query 9 - Trips and associated shapes where lat is bigger than its average and some of their additional data

21

SELECT * WHERE {
?trip a gtfs:Trip
OPTIONAL { 7trip gtfs:shortName 7tripShortName . 1}
?trip gtfs:service 7service
?trip gtfs:route 7route
?trip gtfs:shape 7shape
?shape a gtfs:Shape
7?shape geo:lat 7lat
FILTER (?7lat > %LAT%)

Listing 11: Query 10 - Number of trips that have a duration over 30 minutes

SELECT (count(distinct 7trip) as 7count) WHERE {
?trip a gtfs:Trip
?stopTime a gtfs:StopTime
?stopTime gtfs:trip 7trip
?stopTime gtfs:departureTime 7departureTime
FILTER (?departureTime >= "00:30:00"""xsd:duration)

Listing 12: Query 11 - Trips that are available on a certain date and some of their additional data

SELECT * WHERE {

?service a gtfs:Service

?service gtfs:serviceRule 7calendarRule

7trip gtfs:service 7service

?calendarRule a gtfs:CalendarRule

7?calendarRule schema:startDate 7startDate

?calendarRule schema:endDate 7endDate

FILTER (?startDate <JDATEY)

FILTER (7endDate > %DATEY)

FILTER NOT EXISTS {
?service gtfs:serviceRule 7calendarDateRule
?calendarDateRule a gtfs:CalendarDateRule
?calendarDateRule dct:date JDATEY
?calendarDateRule gtfs:dateAddition "false""“xsd:boolean

Listing 13: Query 12 - Number of stops that are wheelchair-accessible grouped by route and some of their additional data

SELECT 7longName (count(7name) as 7count) WHERE {
?route a gtfs:Route
?route gtfs:longName 7longName
?trip a gtfs:Trip
?trip gtfs:route 7route
?stopTime a gtfs:StopTime
?stopTime gtfs:trip 7trip
?stopTime gtfs:stop 7stop
?stop a gtfs:Stop
?stop foaf:name 7name
?stop gtfs:wheelchairAccessible gtfsaccessible:1l
X
GROUP BY 7longName

22 D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. / Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596

Listing 14: Query 13 - All the accesses of the stations

SELECT = WHERE {
?stop a gtfs:Stop
?stop gtfs:parentStation 7parStation
OPTIONAL {?stop foaf:name 7accName}
?stop gtfs:locationType gtfslocation:2
7parStation a gtfs:Stop
?parStation foaf:name 7name

Listing 15: Query 14 - All stops times and their related routes and stops order by their sequence

SELECT * WHERE {

?stopTime a gtfs:StopTime

?stopTime gtfs:trip 7trip

7stopTime gtfs:stop 7stop

?stopTime gtfs:stopSequence 7sequence

7stop a gtfs:Stop

?trip a gtfs:Trip

7trip gtfs:route 7route

OPTIONAL {?stop foaf:name 7stopName}
} ORDER BY 7sequence

Listing 16: Query 15 - Everything that contains a specific string in the object placeholder (any property)

SELECT * WHERE {
?stop a gtfs:Stop
?stop 7p 7str
FILTER regex (?str, %STRINGY)

Listing 17: Query 16 - For all the routes, all the calendar changes during a specific month

SELECT * WHERE {
?trip a gtfs:Trip
?trip gtfs:service 7service
?trip gtfs:route 7route
?service a gtfs:Service
?service gtfs:serviceRule 7serviceRule
?serviceRule a gtfs:CalendarDateRule
?serviceRule dct:date 7servDate
?serviceRule gtfs:dateAddition "true
FILTER (?servDate >= %DATE1Y%)
FILTER (?servDate <= ’%DATE2%)

xsd:boolean

Listing 18: Query 17 - Trips with their start and end time of the frequencies and associated routes

SELECT ?routeName 7routeType ?trip ?startTime ?7endTime WHERE {
?trip a gtfs:Trip
7trip gtfs:route 7route
?frequency a gtfs:Frequency
7frequency gtfs:startTime 7startTime
7frequency gtfs:endTime 7endTime
?frequency gtfs:trip 7trip
7route a gtfs:Route
?route gtfs:shortName 7routeName
7?route gtfs:routeType 7routeType

D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. /| Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596

Listing 19: Query 18 - All routes that have trips on Sunday

23

SELECT * WHERE {
?service a gtfs:Service
?service gtfs:serviceRule 7serviceRule
?serviceRule a gtfs:CalendarRule
?serviceRule gtfs:sunday "true""~
?trip gtfs:service 7service
?trip gtfs:route 7route
{ ?route gtfs:longName ?7longName } UNION
{ ?route gtfs:shortName ?7shortName }

xsd:boolean

Appendix C. GTFS-Madrid-Bench mappings

Listing 20: Prefixes

prefixes:
rr: http://www.w3.org/ns/r2rml#
foaf: http://xmlns.com/foaf/0.1/
xsd: http://www.w3.0rg/2001/XMLSchema#
rdfs: http://www.w3.0rg/2000/01/rdf-schema#
dc: http://purl.org/dc/elements/1.1/
rev: http://purl.org/stuff/rev#
gtfs: http://vocab.gtfs.org/terms#
geo: http://www.w3.0rg/2003/01/geo/wgs84_post#
schema: http://schema.org/
dct: http://purl.org/dc/terms/
rml: http://semweb.mmlab.be/ns/rml#
gql: http://semweb.mmlab.be/ns/ql#
rdf: http://www.w3.0rg/1999/02/22-rdf -syntax-ns#
mad: http://transport.linkeddata.es/madrid/metro/
gtfsres: http://transport.linkeddata.es/resource/

Listing 21: Routes TriplesMap

routes:

sources:

- [ROUTES.format]

s: mad:routes/$(route_id)

po:

- [a, gtfs:Routel]

- [gtfs:shortName, $(route_short_name)]

- [gtfs:longName, $(route_long_name)]

- [dct:description, $(route_desc)]

- [gtfs:routeType, gtfsres:RouteType/$(route_type) iri]

- [gtfs:routeUrl, $(route_url) iri]

- [gtfs:color, $(route_color)]

- [gtfs:textColor, $(route_text_color)]

- p: gtfs:agency

o:
- mapping: agency
condition:
function: equal
parameters:
- [str1l, $(agency_id)]
- [str2, $(agency_id)]

24 D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. / Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596

Listing 22: Calendar_Date TriplesMap

calendar_rules:

sources: - [CALENDAR.format]
s: mad:calendar_rules/$(service_id)
po:

- [a, gtfs:CalendarRule]

- [gtfs:monday, $(monday), xsd:boolean]

- [gtfs:tuesday, $(tuesday), xsd:boolean]

- [gtfs:wednesday, $(wednesday), xsd:boolean]
- [gtfs:thursday, $(thursday), xsd:boolean]

- [gtfs:friday, $(friday), xsd:boolean]

- [gtfs:saturday, $(saturday), xsd:booleanl]

- [gtfs:sunday, $(sunday), xsd:booleanl]

- [schema:startDate, $(start_date), xsd:datel
- [schema:endDate, $(end_date), xsd:date]

Listing 23: Service_Calendar_Date TriplesMap

services2:
sources:
- [CALENDAR_DATES.format]
s: mad:services/$(service_id)
po:
- [a, gtfs:Servicel]
- p: gtfs:serviceRule
o:
- mapping: calendar_date_rules
condition:
function: equal
parameters:
- [str1l, $(service_id)]
- [str2, $(service_id)]

Listing 24: Agency TriplesMap

agency:
sources:
- [AGENCY.format]

s: mad:agency/$(agency_id)

po:
- [a, gtfs:Agency]
- [foaf:page, $(agency_url) iri]
- [foaf:name,$(agency_name)]
- [gtfs:timeZone,$(agency_timezone)]
- [dct:language,$(agency_lang)]
- [foaf:phone,$(agency_phone)]
- [gtfs:fareUrl,$(agency_fare_url) iri]

Listing 25: Calendar_Date_Rules TriplesMap

calendar_date_rules:
sources:
- [CALENDAR_DATES.format]
s: http://transport.linkeddata.es/madrid/metro/calendar_date_rule/$(service_id)-$(date)
po:
- [a, gtfs:CalendarDateRule]
- [dct:date, $(date), xsd:datel]
- [gtfs:dateAddition, $(exception_type), xsd:boolean]

D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. /| Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596

Listing 26: Stop_Times TriplesMap

25

S

po:

stoptimes:
sources:

[STOP_TIMES.format]
mad:metro/stoptimes/$(trip_id)-$(stop_id)-$(arrival_time)

[a, gtfs:StopTime]

[gtfs:
[gtfs:
[gtfs:
[gtfs:
:pickupType, gtfsres:PickupType/$(pickup_type) iri]

[gtfs

[gtfs:
[gtfs:
p: gtfs:trip

o:

arrivalTime, $(arrival_time),xsd:duration]
departureTime, $(departure_time),xsd:duration]
stopSequence, $(stop_sequence) ,xsd:integer]
headsign, $(stop_headsign)]

drop0ffType, gtfsres:Drop0ffType/$(drop_off_type) " iril]
distanceTraveled, $(shape_dist_traveled)]

- mapping: trips
condition:

function: equal
parameters:
- [str1l, $(trip_id)]
- [str2, $(trip_id)]

p: gtfs:stop

O:

- mapping: stops
condition:

function: equal
parameters:
- [strl, $(stop_id)]
- [str2, $(stop_id)]

Listing 27: Frequencies TriplesMap

S

po:

frequencies:
sources:

[FREQUENCIES.format]
mad:frequency/$(trip_id)-$(start_time)

[a, gtfs:Frequency]
[gtfs:startTime,$(start_time)]
[gtfs:endTime,$(end_time)]

[gtfs:headwaySeconds ,$(headway_secs) ,xsd:integer]
[gtfs:exactTimes,$(exact_times) ,xsd:boolean]

o:

p: gtfs:trip

- mapping: trips
condition:

function: equal
parameters:
- [str1l, $(trip_id)]
- [str2, $(trip_id)]

26 D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. / Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596

Listing 28: Trips TriplesMap

trips:
sources:
- [TRIPS.format]
s: mad:trips/$(trip_id)
po:
- [a, gtfs:Trip]
- [gtfs:headsign, $(trip_headsign)]
- [gtfs:shortName, $(trip_short_name)]
- [gtfs:direction, $(direction_id)]
- [gtfs:block, $(block_id)]
- [gtfs:wheelchairAccessible,gtfsres:WheelchairBoardingStatus/$(wheelchair_accessible) iri]
- p: gtfs:service
o:
- mapping: servicesl
condition:
function: equal
parameters:
- [str1l, $(service_id)]
- [str2, $(service_id)]
- mapping: services2
condition:
function: equal
parameters:
- [str1l, $(service_id)]
- [str2, $(service_id)]
- p: gtfs:route

- mapping: routes
condition:
function: equal
parameters:
- [str1l, $(route_id)]
- [str2, $(route_id)]
- p: gtfs:shape
o:

- mapping: shapes
condition:
function: equal
parameters:
- [strl, $(shape_id)]
- [str2, $(shape_id)]

Listing 29: Feed_Info TriplesMap

feed:
sources:
- [FEED_INFO.format]
s: mad:feed/$(feed_publisher_name)
po:
- [a, gtfs:Feed]
- [dct:publisher,$(feed_publisher_name)]
- [foaf:page,$(feed_published_url) iri]
- [dct:language,$(feed_lang)]
- [schema:startDate,$(feed_start_date), xsd:datel]
- [schema:endDate,$(feed_end_date), xsd:date]
- [schema:version,$(feed_version)]

D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. /| Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596

Listing 30: Stops TriplesMap

stops:
sources:
- [STOPS.format]
s: mad:stops/$(stop_id)
po:
- [a,gtfs:Stopl]
- [gtfs:code,$(stop_code)]
- [dct:identifier,$(stop_id)]
- [foaf:name,$(stop_name)]
- [dct:description,$(stop_desc)]
- [geo:1lat,$(stop_lat),xsd:double]
- [geo:1long,$(stop_lon),xsd:double]
- [gtfs:zone,$(zone_id)]
- [foaf:page,$(stop_url) ~iril
- [gtfs:locationType, gtfsres:LocationType/$(location_type) iri]
- [gtfs:timeZone,$(stop_timezone)]
- [gtfs:wheelchairAccessible,gtfsres:WheelchairBoardingStatus/$(wheelchair_boarding) iril
- p: gtfs:parentStation
o:
- mapping: stops
condition:
function: equal
parameters:
- [str1, $(parent_station)]
- [str2, $(stop_id)]

Listing 31: Shapes TriplesMap

shapes:
sources:
- [SHAPES.format]
s: mad:shape/$(shape_id)-$(shape_pt_sequence)
po:
- [a, gtfs:Shapel
- [geo:lat,$(shape_pt_lat),xsd:double]
- [geo:long,$(shape_pt_lon),xsd:double]
- [gtfs:pointSequence,$(shape_pt_sequence)]
- [gtfs:distanceTraveled,$(shape_dist_traveled)]

Listing 32: Service_Calendar TriplesMap

servicesl:
sources:
- [CALENDAR.format]
s: mad:services/$(service_id)
po:
- [a, gtfs:Service]
- p: gtfs:serviceRule
o:
- mapping: calendar_rules
condition:
function: equal
parameters:
- [str1, $(service_id)]
- [str2, $(service_id)]

28

D. Chaves-Fraga, F. Priyatna, A. Cimmino et al. /| Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100596

References

(1
(2]
3]
(4]

[5]

(6

(7

[8

19l

[10]

A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati,
Linking data to ontologies, J. Data Semant. X (2008) 133-173.

0. Corcho, F. Priyatna, D. Chaves-Fraga, Towards a new generation of
ontology based data access, Semant. Web 11 (1) (2020) 153-160.

C. Bizer, A. Schultz, The Berlin SPARQL benchmark, Int. J. Semantic Web
Inf. Syst. 5 (2) (2009) 1-24.

D. Lanti, M. Rezk, G. Xiao, D. Calvanese, The NPD benchmark: Reality check
for OBDA systems, OpenProceedings.org, 2015.

M. Schmidt, O. Gorlitz, P. Haase, G. Ladwig, A. Schwarte, T. Tran, Fedbench:
A benchmark suite for federated semantic data query processing, in:
International Semantic Web Conference, Springer, 2011, pp. 585-600.

A. Hasnain, Q. Mehmood, S.S. e Zainab, M. Saleem, C. Warren, D. Zehra,
S. Decker, D. Rebholz-Schuhmann, Biofed: federated query processing over
life sciences linked open data, J. Biomed. Semant. 8 (1) (2017) 13.

G. Montoya, M.-E. Vidal, O. Corcho, E. Ruckhaus, C. Buil-Aranda,
Benchmarking federated SPARQL query engines: Are existing testbeds
enough? in: International Semantic Web Conference, Springer, 2012, pp.
313-324.

K.M. Endris, P.D. Rohde, M.-E. Vidal, S. Auer, Ontario: Federated query
processing against a semantic data lake, in: Database and Expert Systems
Applications, in: Lecture Notes in Computer Science, Springer, Cham, 2019.
M.N. Mami, D. Graux, S. Scerri, H. Jabeen, S. Auer, Querying data lakes
using spark and presto, in: International World Wide Web Conference,
ACM, 2019, pp. 3574-3578.

D. Chaves-Fraga, K.M. Endris, E. Iglesias, 0. Corcho, M. Vidal, What are
the parameters that affect the construction of a knowledge graph? in:
OTM Confederated International Conferences “on the Move To Meaningful
Internet Systems", Springer, 2019.

[11] J. Mora, O. Corcho, Towards a systematic benchmarking of ontology-

[12]

[13]
[14]
[15]

[16]

based query rewriting systems, in: International Semantic Web Conference,
Springer, 2013, pp. 376-391.

M. Acosta, M.-E. Vidal, T. Lampo,]. Castillo, E. Ruckhaus, ANAPSID: an
adaptive query processing engine for SPARQL endpoints, in: International
Semantic Web Conference, Springer, 2011, pp. 18-34.

D. Lanti, G. Xiao, D. Calvanese, VIG: Data scaling for OBDA benchmarks,
Semant. Web 10 (2018) 1-21.

The W3C SPARQL Working Group, SPARQL 1.1 Overview, W3C, 2013,
http://www.w3.0rg/TR/2013/REC-sparql11-overview-20130321/.

D.L. McGuinness, F. Van Harmelen, et al, OWL Web ontology language
overview, W3C Recomm. 10 (10) (2004) 2004.

D. Chaves-Fraga, E. Ruckhaus, F. Priyatna, M.-E. Vidal, O. Corcho, Enhancing
OBDA query translation over tabular data with morph-CSV, 2020, arXiv:
2001.09052.

[17]]. Tennison, G. Kellogg, I. Herman, Model for Tabular Data and Metadata

(18]

[19]

[20]

[21]

[22]

on the Web, W3C, 2015, http://www.w3.0org/TR/2015/REC-tabular-data-
model-20151217/.

A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, R.
Van de Walle, RML: A generic language for integrated RDF mappings of
heterogeneous data., in: LDOW, 2014.

P. Heyvaert, D. Chaves-Fraga, F. Priyatna, O. Corcho, E. Mannens, R.
Verborgh, A. Dimou, Conformance test cases for the RDF mapping lan-
guage (RML), in: Iberoamerican Knowledge Graphs and Semantic Web
Conference, Springer, 2019, pp. 162-173.

P. Heyvaert, B. De Meester, A. Dimou, R. Verborgh, Declarative rules for
linked data generation at your fingertips!, in: European Semantic Web
Conference, Springer, 2018, pp. 213-217.

A. Schwarte, P. Haase, K. Hose, R. Schenkel, M. Schmidt, Fedx: Optimization
techniques for federated query processing on linked data, in: International
Semantic Web Conference, Springer, 2011, pp. 601-616.

M.A. Sharaf, P.K. Chrysanthis, A. Labrinidis, K. Pruhs, Algorithms and
metrics for processing multiple heterogeneous continuous queries, ACM
Trans. Database Syst. 33 (1) (2008) 5.

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

M. Acosta, M.-E. Vidal, Y. Sure-Vetter, Diefficiency metrics: measuring the
continuous efficiency of query processing approaches, in: International
Semantic Web Conference, Springer, 2017, pp. 3-19.

J. Mora, R. Rosati, O. Corcho, Kyrie2: Query rewriting under extensional
constraints in {££HZ®}, in: International Semantic Web Conference,
Springer, 2014, pp. 568-583.

A. Chebotko, S. Lu, F. Fotouhi, Semantics preserving SPARQL-to-SQL
translation, Data Knowl. Eng. 68 (10) (2009) 973-1000.

M. Vidal, E. Ruckhaus, T. Lampo, A. Martinez,]. Sierra, A. Polleres, Efficiently
joining group patterns in SPARQL queries, in: Extended Semantic Web
Conference, 2010, pp. 228-242.

J. Pérez, M. Arenas, C. Gutiérrez, Semantics and complexity of SPARQL,
ACM Trans. Database Syst. 34 (3) (2009) 16:1-16:45.

G. Xiao, R. Kontchakov, B. Cogrel, D. Calvanese, E. Botoeva, Efficient
handling of SPARQL OPTIONAL for OBDA (extended version), 2018, CoRR
abs/1806.05918, URL: arXiv:1806.05918.

R. Angles, C. Gutiérrez, Negation in SPARQL, in: Proceedings of the
10th Alberto Mendelzon International Workshop on Foundations of Data
Management, 2016.

K.M. Endris, M. Galkin, I. Lytra, M.N. Mami, M.-E. Vidal, S. Auer, MULDER:
querying the linked data web by bridging RDF molecule templates, in:
International Conference on Database and Expert Systems Applications,
Springer, 2017, pp. 3-18.

M. Rodriguez-Muro, M. Rezk, Efficient SPARQL-to-SQL with R2RML
mappings, J. Web Semant. 33 (2015) 141-169.

F. Priyatna, O. Corcho, J. Sequeda, Formalisation and experiences of -based
SPARQL to SQL query translation using morph, in: International World
Wide Web Conference, 2014.

F. Michel, L. Djimenou, C.F. Zucker,]J. Montagnat, Translation of relational
and non-relational databases into RDF with XxR2RML, in: 11th International
Confenrence on Web Information Systems and Technologies, WEBIST'15,
2015, pp. 443-454.

Y. Khan, A. Zimmermann, A. Jha, V. Gadepally, M. D’Aquin, R. Sahay,
One size does not fit all: Querying web polystores, IEEE Access 7 (2019)
9598-9617.

D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk, M.
Rodriguez-Muro, G. Xiao, Ontop: Answering SPARQL queries over relational
databases, Semant. Web 8 (3) (2017) 471-487.

B. De Meester, A. Dimou, R. Verborgh, E. Mannens, An ontology to
semantically declare and describe functions, in: European Semantic Web
Conference, Springer, 2016, pp. 46-49.

C. Debruyne, D. O’Sullivan, R2RML-F: Towards sharing and executing
domain logic in R2ZRML mappings, in: International World Wide Web
Conference, in: Linked Data on the Web Workshop, 2016.

F. Priyatna, D. Chaves-Fraga, A. Alobaid, O. Corcho, morph-GraphQL:
GraphQL Servers Generation from R2RML Mappings (S), in: Proceedings of
the 31st International Conference on Software Engineering and Knowledge
Engineering, KSI Research Inc. and Knowledge Systems Institute Graduate
School, 2019, http://dx.doi.org/10.18293/seke2019-055.

C. Sundara, S. Das, R. Cyganiak, R2ZRML: RDB to RDF Mapping Language,
W3C, 2012, http://www.w3.0rg/TR/2012/REC-r2rml-20120927/.

J.E. Sequeda, D.P. Miranker, Ultrawrap: SPARQL execution on relational
data, Web Semant.: Sci. Serv. Agents (2013) http://dx.doi.org/10.1016/j.
websem.2013.08.002, WWW URL: http://www.sciencedirect.com/science/
article/pii/S1570826813000383.

M. Arenas, A. Bertails, E. Prud’hommeaux,]. Sequeda, A direct mapping of
relational data to RDF, W3C Recomm. 27 (2012) 1-11.

J. Slepicka, C. Yin, P.A. Szekely, C.A. Knoblock, KR2RML: An Alterna-
tive interpretation of R2RML for heterogenous sources, in: International
Workshop on Consuming Linked Data, 2015.

A. Chortaras, G. Stamou, Mapping diverse data to RDF in practice, in:
International Semantic Web Conference, Springer, 2018, pp. 441-457.

M. Lefrangois, A. Zimmermann, N. Bakerally, A SPARQL extension for gen-
erating RDF from heterogeneous formats, in: The Semantic Web, Springer
International Publishing, 2017.

http://refhub.elsevier.com/S1570-8268(20)30035-4/sb1
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb1
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb1
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb2
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb2
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb2
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb3
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb3
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb3
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb4
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb4
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb4
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb5
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb5
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb5
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb5
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb5
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb6
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb6
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb6
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb6
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb6
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb7
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb7
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb7
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb7
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb7
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb7
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb7
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb8
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb8
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb8
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb8
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb8
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb9
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb9
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb9
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb9
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb9
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb10
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb10
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb10
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb10
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb10
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb10
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb10
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb11
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb11
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb11
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb11
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb11
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb12
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb12
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb12
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb12
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb12
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb13
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb13
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb13
http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb15
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb15
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb15
http://arxiv.org/abs/2001.09052
http://arxiv.org/abs/2001.09052
http://arxiv.org/abs/2001.09052
http://www.w3.org/TR/2015/REC-tabular-data-model-20151217/
http://www.w3.org/TR/2015/REC-tabular-data-model-20151217/
http://www.w3.org/TR/2015/REC-tabular-data-model-20151217/
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb18
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb18
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb18
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb18
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb18
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb19
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb19
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb19
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb19
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb19
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb19
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb19
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb20
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb20
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb20
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb20
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb20
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb21
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb21
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb21
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb21
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb21
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb22
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb22
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb22
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb22
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb22
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb23
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb23
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb23
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb23
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb23
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb24
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb24
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb24
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb24
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb24
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb25
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb25
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb25
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb27
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb27
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb27
http://arxiv.org/abs/1806.05918
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb30
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb30
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb30
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb30
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb30
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb30
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb30
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb31
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb31
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb31
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb34
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb34
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb34
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb34
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb34
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb35
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb35
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb35
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb35
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb35
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb36
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb36
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb36
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb36
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb36
http://dx.doi.org/10.18293/seke2019-055
http://www.w3.org/TR/2012/REC-r2rml-20120927/
http://dx.doi.org/10.1016/j.websem.2013.08.002
http://dx.doi.org/10.1016/j.websem.2013.08.002
http://dx.doi.org/10.1016/j.websem.2013.08.002
http://www.sciencedirect.com/science/article/pii/S1570826813000383
http://www.sciencedirect.com/science/article/pii/S1570826813000383
http://www.sciencedirect.com/science/article/pii/S1570826813000383
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb41
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb41
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb41
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb43
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb43
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb43
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb44
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb44
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb44
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb44
http://refhub.elsevier.com/S1570-8268(20)30035-4/sb44

	GTFS-Madrid-Bench: A benchmark for virtual knowledge graph access in the transport domain
	Introduction
	Preliminaries
	The GTFS-Madrid-Bench
	The linked GTFS ontology
	Dataset generation
	Mappings
	Queries
	Metrics

	Evaluation
	Tools
	Setup
	Results

	Discussion
	Sustainability and extensibility

	Related work
	Federated SPARQL benchmarks
	OBDA Benchmarks
	Virtual OBDA and OBDI approaches
	Mapping languages

	Conclusions and future work
	Declaration of competing interest
	Acknowledgments
	Appendix A. Completeness of query evaluation
	Appendix B. GTFS-Madrid-Bench queries
	Appendix C. GTFS-Madrid-Bench mappings
	References

